http://blog.csdn.net/candycat1992/article/details/41254799…
四元数介绍 旋转,应该是三种坐标变换--缩放.旋转和平移,中最复杂的一种了.大家应该都听过,有一种旋转的表示方法叫四元数.按照我们的习惯,我们更加熟悉的是另外两种旋转的表示方法--矩阵旋转和欧拉旋转.矩阵旋转使用了一个4*4大小的矩阵来表示绕任意轴旋转的变换矩阵,而欧拉选择则是按照一定的坐标轴顺序(例如先x.再y.最后z).每个轴旋转一定角度来变换坐标或向量,它实际上是一系列坐标轴旋转的组合. 那么,四元数又是什么呢?简单来说,四元数本质上是一种高阶复数(听不懂了吧...),是一个四维空间,相对…
什么是Quaternion四元数 1843年,William Rowan Hamilton发明了四元数,但直到1985年才有一个叫Ken Shoemake的人将四元数引入计算机图形学处理领域.四元数在3D图形学中主要用于旋转,骨骼动画等. 简单地来说,四元数描述了一次旋转:绕任意一个轴(V)旋转一个弧度(θ). 那么四元数q就与(V,θ)两个参数有关. 具体公式: q = (sin(θ / 2) * V,cos(θ / 2) ) q = (sin(θ / 2) * x,sin(θ / 2) *…
版权声明:本文为博主原创文章,欢迎转载.请保留博主链接:http://blog.csdn.net/andrewfan 欧拉旋转.四元数.矩阵旋转之间的差异 除了欧拉旋转以外,还有两种表示旋转的方式:矩阵旋转和四元数旋转.接下来我们比较它们的优缺点. 欧拉角 优点:三个角度组成,直观,容易理解. 优点:可以进行从一个方向到另一个方向旋转大于180度的角度. 弱点:死锁问题. 前面<[Unity编程]欧拉角与万向节死锁(图文版)>已经介绍过万向节死锁问题. 四元数 内部由四个数字(在Unity中称…
学习和研究下unity3d的四元数 Quaternion 今天准备学习和研究下unity3d的四元数 Quaternion 四元数在电脑图形学中用于表示物体的旋转,在unity中由x,y,z,w 表示四个值. 四元数是最简单的超复数.复数是由实数加上元素 i 组成,其中i^2 = -1 \,. 相似地,四元数都是由实数加上三个元素 i.j.k 组成,而且它们有如下的关系: i^2 = j^2 = k^2 = ijk = -1 \, 每个四元数都是 1.i.j 和 k 的线性组合,即是四元数一般可…
原地址:http://www.cnblogs.com/88999660/archive/2013/04/02/2995074.html 今天准备学习和研究下unity3d的四元数 Quaternion 四元数在电脑图形学中用于表示物体的旋转,在unity中由x,y,z,w 表示四个值. 四元数是最简单的超复数. 复数是由实数加上元素 i 组成,其中i^2 = -1 ,. 相似地,四元数都是由实数加上三个元素 i.j.k 组成,而且它们有如下的关系: i^2 = j^2 = k^2 = ijk =…
欧拉角的定义 在写这篇博客之前,我搜索了网上很多关于欧拉角的定义,发现大部分引用自维基百科的定义,我这里也引述一下: 维基百科定义 莱昂哈德·欧拉用欧拉角来描述刚体在三维欧几里得空间的取向.对于任何参考系,一个刚体的取向,是依照顺序,从这参考系,做三个欧拉角的旋转而设定的.所以,刚体的取向可以用三个基本旋转矩阵来决定.换句话说,任何关于刚体旋转的旋转矩阵是由三个基本旋转矩阵复合而成的. 对于在三维空间里的一个参考系,任何坐标系的取向,都可以用三个欧拉角来表现.参考系又称为实验室参考系,是静止不动…
技术背景 在前面一篇文章中我们介绍了欧拉角死锁问题的一些产生背景,还有基于四元数的求解方案.四元数这个概念虽然重要,但是很少会在通识教育课程中涉及到,更多的是一些图形学或者是工程学当中才会进行讲解.本文主要是面向四元数,相比上一篇文章更加详细的介绍和总结一下四元数的一些运算法则,还有基于四元数的插值法. 基本运算 说到四元数,很多人可能会觉得有点陌生,但是如果说复数,很多人就都有学习过.我们一般用\(z=x+iy\)这样的形式去定义一个复数(Complex Number),其中\(x\)是实部,…
最近在重写自己游戏引擎的场景管理模块,重温了一下有关四元数的一些知识,在此做一下简单的笔记. 四元数可以用来准确地描述三维矢量的旋转,并且可以有效地表达多个旋转操作的叠加,因此在三维游戏引擎的场景管理模块中,四元数具有很重要的意义. 本文为大便一箩筐的原创内容,转载请注明出处,谢谢:http://www.cnblogs.com/dbylk/ 一.定义 形如A = ai + bj + ck + d的复数称为四元数,其中i.j.k为虚数(称为四元数的基元),a.b.c.d为实数. 二.常见性质 1.…
地址:http://blog.csdn.net/stalendp/article/details/17114135 这篇文章将收集unity的相关技巧,会不断地更新内容. 1)保存运行中的状态 unity在运行状态时是不能够保存的.但在运行时编辑的时候,有时会发现比较好的效果想保存.这时可以在 “Hierarchy”中复制相关对象树,暂停游戏后替换原来的,就可以了. 2)Layer的用法 LayerMask.NameToLayer("Ground");  // 通过名字获取layer…