class-感知机Perception】的更多相关文章

1. 感知机模型   感知机Perception是一个线性的分类器,其只适用于线性可分的数据.          f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找到一个能使训练集中的数据可分的超平面.因此,它找到的并不一定是最优的,即只是恰好拟合了训练数据的超平面. 2. 学习 感知机的学习策略为:最小化误分类点到超平面的距离. 3. 基于numpy的感知机实现 1 # coding: utf-8 2 import numpy as np 3 4 5 def…
CS229 笔记03 局部加权线性回归 Non-Parametric Learning Algorithm (非参数学习方法) Number of parameters grows with the size of sample. (参数的数目随着样本的数目增加而增加.) Locally Weighted Regression (局部加权线性回归) 损失函数的定义为: $ J_\Theta=\sum_i{w^{(i)}(y^{(i)}-\Theta^{{\rm T}}x^{(i)})^2} $…
Deep Learning 近年来在各个领域都取得了 state-of-the-art 的效果,对于原始未加工且单独不可解释的特征尤为有效,传统的方法依赖手工选取特征,而 Neural Network 可以进行学习,通过层次结构学习到更利于任务的特征.得益于近年来互联网充足的数据,计算机硬件的发展以及大规模并行化的普及.本文主要简单回顾一下 MLP ,也即为Full-connection Neural Network ,网络结构如下,分为输入,隐层与输出层,除了输入层外,其余的每层激活函数均采用…
BPN(Back Propagation Net) 反向传播神经网络是对非线性可微分函数进行权值训练的多层网络,是前向神经网络的一种. BP网络主要用于: 1)函数逼近与预测分析:用输入矢量和相应的输出矢量训练一个网络,逼近一个函数或预测未知信息: 2)模式识别:用一个特定的输出矢量将它与输入矢量联系起来: 3)分类:把输入矢量以所定义的合适方式进行分类: 4)数据压缩:减少输出矢量维数以便于传输与存储. 比如,一个三层BPN结构如下: 由输入层.隐含层和输出层三层组成.其中每一层的单元与之相邻…
一.感知机(Perception) 1.1 原理: 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练数据集正实例点和负实例点完全正确分开的分离超平面.如果是非线性可分的数据,则最后无法获得超平面. 1.2 感知机模型 感知机从输入空间到输出空间的模型如下: 1.3 求解 思想:错误驱动 损失函数:期望使错误分类的所有样本,到超平面的距离之和最小 (其中M集合是误分类点的集合)…
Perception Learning Algorithm, PLA 1.感知机 感知机是一种线性分类模型,属于判别模型. 感知机模型给出了由输入空间到输出空间的映射: f(X) = sign(WTX + b) 简单来说,就是找到一个分类超平面 WTX + b =0,将数据集中的正例和反例完全分开. 2.感知机学习算法(PLA) 感知机学习算法是为了找到 W 和 b  以确定分类超平面.为了减少符号,令 W = [b, W1, W2, ..., Wn], X = [1, X1, X2, ...,…
感知机是简单的线性分类模型 ,是二分类模型.其间用到随机梯度下降方法进行权值更新.参考他人代码,用matlab实现总结下. 权值求解过程通过Perceptron.m函数完成 function W = Perceptron(X,y,learnRate,maxStep) % Perceptron.m % Perception Learning Algorithm(感知机) % X一行为一个样本,y的取值{-1,+1} % learnRate:学习率 % maxStep:最大迭代次数 [n,m] =…
感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机模型参数,\(w \in R^n\)叫做权值,\(b \in R\)叫做偏置(bias) 感知机是一种线性分类模型属于判别模型. 感知机的几何解释:线性方程:\[w \cdot x + b = 0\]对应于特征空间\(R^n\)中的一个超平面S,这个超平面将特征空间分为两个部分,位于两部分的点(特征…
参考博客 Liam Q博客 和李航的<统计学习方法> 感知机学习旨在求出将训练数据集进行线性划分的分类超平面,为此,导入了基于误分类的损失函数,然后利用梯度下降法对损失函数进行极小化,从而求出感知机模型.感知机模型是神经网络和支持向量机的基础.下面分别从感知机学习的模型.策略和算法三个方面来介绍. 1. 感知机模型 感知机模型如下: f(x)= sign(w*x+b) 其中,x为输入向量,sign为符号函数,括号里面大于等于0,则其值为1,括号里面小于0,则其值为-1.w为权值向量,b为偏置.…
感知机是古老的统计学习方法,主要应用于二类线性可分数据,策略是在给定的超平面上对误差点进行纠正,从而保证所有的点都是正确可分的. 用到的方法是随机梯度下降法,由于是线性可分的,可保证最终在有限步内收敛.具体可参考李航的<统计学习方法> #include<iostream> #include<algorithm> #include<vector> #include<fstream> using namespace std; typedef vect…