Reservoir Computing论文学习】的更多相关文章

目录 背景: RC优势: 储备池计算主要理论组成: ESNS数学模型 结构表示 状态方程和输出方程 计算过程 储备池的优化 GA:使用进化算法对参数进行优化: 基于随机梯度下降法的储备池参数优化 参考文章: Reservoir Computing 背景: 神经网络的一种弥补RNN缺点 神经网 络方法在具体应用过程中也存在一些局限性 .比如前向 结构的神经网络一 般不适 合处理与 时序相 关的机 器学 习问题 , 而在实际应用中出 现的问 题往往 与时 间相关 , 比如预测 .系统辨识 .自适应滤…
原文连接:https://sinews.siam.org/Details-Page/reservoir-computing-harnessing-a-universal-dynamical-system 目前人们对开发用于处理海量数据集的人工智能算法非常感兴趣,通常用于分类任务,例如识别照片中的面部.但是,如果我们的目标是学习一个确定性的动力系统呢?相关应用包括预测天气,控制复杂的动力系统,以及指纹识别射频发射器以保护物联网. 训练“通用”动力系统来预测所需系统的动力学是解决这个问题的一种方法,…
Faster R-CNN在Fast R-CNN的基础上的改进就是不再使用选择性搜索方法来提取框,效率慢,而是使用RPN网络来取代选择性搜索方法,不仅提高了速度,精确度也更高了 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 依靠于区域推荐算法(region proposal algorithms)去假定目标位置的最优的目标检测网络.之前的工作如SPPnet和Fast RCNN都减少了检测…
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Szegedy有一个有趣的发现:有几种机器学习模型,包括最先进的神经网络,很容易遇到对抗性的例子.所谓的对抗性样例就是对数据集中的数据添加一个很小的扰动而形成的输入.在许多情况下,在训练数据的不同子集上训练不同体系结构的各种各样的模型错误地分类了相同的对抗性示例.这表明,对抗性例子暴露了我们训练算法中的基本盲点.…
A³CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification 有效利用信息多个数据源的问题已成为遥感领域一个相关但具有挑战性的研究课题.在本文中,我们提出了一种新的方法来利用两个数据源的互补性:高光谱图像(HSI)和光检测与测距(LiDAR)数据.具体来说,我们开发了一种新的双通道空间,频谱和多尺度注意力卷积…
特别声明:本文来源于掘金,"预留"发表的[Apache Calcite 论文学习笔记](https://juejin.im/post/5d2ed6a96fb9a07eea32a6ff) 最近在关注大数据处理的技术和开源产品的实现,发现很多项目中都提到了一个叫 Apache Calcite 的东西.同样的东西一两次见不足为奇,可再三被数据处理领域的各个不同时期的产品提到就必须引起注意了.为此也搜了些资料,关于这个东西的介绍2018 年发表在 SIGMOD 的一篇论文我觉得是拿来入门最合适…
Rethinking the Inception Architecture for Computer Vision 论文地址:https://arxiv.org/abs/1512.00567 Abstract 介绍了卷积网络在计算机视觉任务中state-of-the-art.分析现在现状,本文通过适当增加计算条件下,通过suitably factorized convolutions 和 aggressive regularization来扩大网络.并说明了取得的成果. 1. Introduct…
之前所学习的论文中求解稀疏解的时候一般采用的都是最小二乘方法进行计算,为了降低计算复杂度和减少内存,这篇论文梯度追踪,属于贪婪算法中一种.主要为三种:梯度(gradient).共轭梯度(conjugate gradient).近似共轭梯度(an approximation to the conjugate gradient),看师兄之前做压缩感知的更新点就是使用近似共轭梯度方法代替了StOMP中的最小二乘的步骤. 首先说明一下论文中的符号表示: Γn表示第n次迭代过程中所选择的原子的索引 ΦΓn…
先附上论文链接  https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf 最近在自学MIT的6.824分布式课程,找到两个比较好的github:MIT课程<Distributed Systems >学习和翻译 和 https://github.com/chaozh/MIT-6.824-2017 6.824的Lab 2 就是实现Raft算法.Raft是一种分布式一致性算法,提供了和paxos相同的功能和性能,但比paxos要容易理解很多…
博客:blog.shinelee.me | 博客园 | CSDN 写在前面 论文状态:Published in CVIU Volume 161 Issue C, August 2017 论文地址:https://arxiv.org/abs/1606.02228 github地址:https://github.com/ducha-aiki/caffenet-benchmark 在这篇文章中,作者在ImageNet上做了大量实验,对比卷积神经网络架构中各项超参数选择的影响,对如何优化网络性能很有启发…