目录 SVM介绍 线性分类 间隔 最大间隔分类器 拉格朗日乘子法(Lagrange multipliers) 拉格朗日乘子法推导 KKT条件(Karush-Kuhn-Tucker Conditions) 拉格朗日乘子法对偶问题 Slater 条件 最大间隔分类器与拉格朗日乘子法 核技巧 核函数 软间隔 软间隔支持向量机推导 SMO算法 SMO变量的选择方法 总结 参考 还是老规矩,这一篇博客是对SVM进行介绍,下一篇博客就是使用SVM进行具体的使用. SVM介绍 首先介绍SVM是什么,SVM(s…
目录 介绍 基于SVM对MINIST数据集进行分类 使用SVM SVM分析垃圾邮件 加载数据集 分词 构建词云 构建数据集 进行训练 交叉验证 炼丹术 总结 参考 介绍 在上一篇博客:数据挖掘入门系列教程(八点五)之SVM介绍以及从零开始公式推导中,详细的讲述了SVM的原理,并进行了详细的数学推导.在这篇博客中,主要是应用SVM,使用SVM进行数据分类,不会涉及到SVM的解释,so,如果对svm并不是特别了解的话,非常建议先去看我的上一篇博客(or其他博主的博客),然后再来看这一篇博客.因为在这…
目录 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理Iris 加载数据集 数据特征 训练 随机森林 调参工程师 结尾 数据挖掘入门系列教程(四)之基于scikit-lean决策树处理Iris 在上一篇博客,我们介绍了决策树的一些知识.如果对决策树还不是很了解的话,建议先阅读上一篇博客,在来学习这一篇. 本次实验基于scikit-learn中的Iris数据.说了好久的Iris,从OneR到决策树,那么Iris到底长啥样呢? 加载数据集 首先我们还是需要先加载数据集,数据集来自sc…
目录 数据挖掘入门系列教程(八)之使用神经网络(基于pybrain)识别数字手写集MNIST 下载数据集 加载数据集 构建神经网络 反向传播(BP)算法 进行预测 F1验证 总结 参考 数据挖掘入门系列教程(八)之使用神经网络(基于pybrain)识别数字手写集MNIST 在本章节中,并不会对神经网络进行介绍,因此如果不了解神经网络的话,强烈推荐先去看<西瓜书>,或者看一下我的上一篇博客:数据挖掘入门系列教程(七点五)之神经网络介绍 本来是打算按照<Python数据挖掘入门与实践>…
数据挖掘入门系列教程(二)之分类问题OneR算法 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:GitHub 在上一篇博客中,我们通过分析亲和性来寻找数据集中数据与数据之间的相关关系.这篇博客我们会讨论简单的分类问题. 分类简介 分类问题,顾名思义我么就是去关注类别(也就是目标)这个变量.分类应用的目的是根据已知类别的数据集得到一个分类模型,然后通过这个分类模型去对类别未知的数据进行分类.这里有…
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:GitHub 在上一篇博客中,我们使用了简单的OneR算法对Iris进行分类,在…
深度神经网络(DNN,Deep Neural Networks)简介 首先让我们先回想起在之前博客(数据挖掘入门系列教程(七点五)之神经网络介绍)中介绍的神经网络:为了解决M-P模型中无法处理XOR等简单的非线性可分的问题时,我们提出了多层感知机,在输入层和输出层中间添加一层隐含层,这样该网络就能以任意精度逼近任意复杂度的连续函数. 然后在数据挖掘入门系列教程(八)之使用神经网络(基于pybrain)识别数字手写集MNIST博客中,我们使用类似上图的神经网络结构对MINIST数据集进行了训练,最…
目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联规则学习的经典算法之一,用来寻找出数据集中频繁出现的数据集合.如果看过以前的博客,是不是想到了这个跟数据挖掘入门系列教程(一)之亲和性分析这篇博客很相似?Yes,的确很相似,只不过在这篇博客中,我们会更加深入的分析如何寻找可靠有效的亲和性.并在下一篇博客中使用Apriori算法去分析电影中的亲和性.…
数据挖掘入门系列教程(五)之Apriori算法Python实现 加载数据集 获得训练集 频繁项的生成 生成规则 获得support 获得confidence 获得Lift 进行验证 总结 参考 数据挖掘入门系列教程(五)之Apriori算法Python实现 在上一篇博客中,我们介绍了Apriori算法的算法流程,在这一片博客中,主要介绍使用Python实现Apriori算法.数据集来自grouplens中的电影数据,同样我的GitHub上面也有这个数据集. 推荐下载这个数据集,1MB大小够了,因…
简介 在上一篇博客:数据挖掘入门系列教程(十点五)之DNN介绍及公式推导中,详细的介绍了DNN,并对其进行了公式推导.本来这篇博客是准备直接介绍CNN的,但是想了一下,觉得还是使用keras构建一个DNN网络,然后进行一定的分类操作,这样能够更加的直观一点. 在这篇博客中将介绍: keras的基本使用 使用keras构建DNN对MNIST数据集进行预测 使用前准备 这次我们将使用keras库去构建神经网络,然后默认使用tensorflow作为后端,我是用的python库版本如下: keras:v…