Java实现 LeetCode 60 第k个排列】的更多相关文章

60. 第k个排列 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1, n!]. 示例 1: 输入: n = 3,…
题目: 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1,  n!]. 示例 1: 输入: n = 3, k = 3…
题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123" "132" "213" "231" "312" "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1,  n!]. 示例 1: 输入: n = 3, k =…
LeetCode:第K个排列[60] 题目描述 给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: "123""132""213""231""312""321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9].给定 k 的范围是[1,  n!]. 示例 1: 输入…
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推 算出来, 对于n=4, k=15 找到k=15排列的过程: 1 + 对2,3,4的全排列 (3!个) 2 + 对1,3,4的全排列 (3!个) 3, 1 + 对2,4的全排列(2!个) 3 + 对1,2,4的全排列 (3!个)-------> 3, 2 + 对1,4的全排列(2!个)-------> 3, 2, 1 + 对4的全排列(1!个)-------> 3214 4 + 对1,2,3的全排列 (3!个…
/* n个数有n!个排列,第k个排列,是以第(k-1)/(n-1)!个数开头的集合中第(k-1)%(n-1)!个数 */ public String getPermutation(int n, int k) { k--; List<Integer> list = new ArrayList<>(); StringBuilder res = new StringBuilder(); int count =1; //以每个数字开头的集合有多少中排列 for (int i = 2; i…
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解题思路一: 之前我们有mergeTwoLists(ListNode l1, ListNode l2)方法,直接调用的话,需要k-1次调用,每次调用都需要产生一个ListNode[],空间开销很大.如果采用分治的思想,对相邻的两个ListNode进行mergeTwoLists,每次将规模减少一半,直到…
题目:给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列.按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:    "123"    "132"    "213"    "231"    "312"    "321"给定 n 和 k,返回第 k 个排列.说明:给定 n 的范围是 [1, 9].给定 k 的范围是[1,  n!]. 来源: https:…
原题 给出集合 [1,2,3,-,n],其所有元素共有 n! 种排列. 按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下: 1. "123" 2. "132" 3. "213" 4. "231" 5. "312" 6. "321" 给定 n 和 k,返回第 k 个排列. 说明: 给定 n 的范围是 [1, 9]. 给定 k 的范围是[1, n!]. 示例 1:…
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" "…