为了优化进化算法在神经网络结构搜索时候选网络训练过长的问题,参考ENAS和NSGA-III,论文提出连续进化结构搜索方法(continuous evolution architecture search, CARS),最大化利用学习到的知识,如上一轮进化的结构和参数.首先构造用于参数共享的超网,从超网中产生子网,然后使用None-dominated排序策略来选择不同大小的优秀网络,整体耗时仅需要0.5 GPU day   来源:晓飞的算法工程笔记 公众号 论文: CARS: Continuous…
论文提出使用进化算法来进行神经网络结构搜索,整体搜索逻辑十分简单,结合权重继承,搜索速度很快,从实验结果来看,搜索的网络准确率挺不错的.由于论文是个比较早期的想法,所以可以有很大的改进空间,后面的很大算法也是基于这种想法进行更好的补充   来源:晓飞的算法工程笔记 公众号 论文: Large-Scale Evolution of Image Classifiers 论文地址:https://arxiv.org/abs/1703.01041 Introduction   论文对当前的进化算法进行少…
https://www.cnblogs.com/chenyliang/p/6847744.html Note:后记此权值共享非彼卷积共享.说的是layer实体间的参数共享. Introduction 想将两幅图像”同时“经过同一模型,似乎之前有些听闻的shared model没有找到确凿的痕迹,单个构建Variable然后每层设置,对debug阶段(甚至使用阶段)来说是场噩梦.能够可行的只想到了,在set_params阶段进行指定,如果简单的将两个load的symbol进行Group,然后进行b…
局部连接与权值共享 下图是一个很经典的图示,左边是全连接,右边是局部连接. 对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 × 10^6 = 10^12个权值参数,如此数目巨大的参数几乎难以训练:而采用局部连接,隐藏层的每个神经元仅与图像中10 × 10的局部图像相连接,那么此时的权值参数数量为10 × 10 × 10^6 = 10^8,将直接减少4个数量级. 尽管减少了几个数量级,但参数数量依然较多.能不能再进一步减…
根据网上查询到的说法,参数就是在卷积神经网络中可以被训练的参数,比如卷积核的权值和偏移等等,而超参数是一些预先设定好并且无法改变的,比如说是卷积核的个数等. 另外还有一个最最基础的概念,就是卷积核的权值共享,这个共享其实指的是一个卷积核在一个输入中的不同位置是共享参数的(意思就是一个输入使用同一个卷积核的参数).…
本文主要针对广告检索领域的查询重写应用,依据查询-广告点击二部图,在MapReduce框架上实现SimRank++算法.关于SimRank++算法的背景和原理请參看前一篇文章<基于MapReduce的SimRank++算法研究与实现>. SimRank++的矩阵形式的计算公式为: 算法主要过程例如以下: Step1: 计算权值矩阵.并获取最大Query编号和最大广告编号. Step2: 以Step1的输出作为输入,迭代计算SimRank相似度. Step3: 计算证据矩阵.并用计算结果修正St…
Dijkstra算法当中将节点分为已求得最短路径的集合(记为S)和未确定最短路径的个集合(记为U),归入S集合的节点的最短路径及其长度不再变更,如果边上的权值允许为负值,那么有可能出现当与S内某点(记为a)以负边相连的点(记为b)确定其最短路径时,它的最短路径长度加上这条负边的权值结果小于a原先确定的最短路径长度(意思是原先从a0---a已经确定一个最短路径,而此时的边权值为负,则 此步骤中的边权计算结果必定小于已经确定了的路径长度),但是a在Dijkstra算法下是无法更新的,由此便可能得 不…
Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3299    Accepted Submission(s): 1674 Problem Description On a grid map there are n little men and n houses. In each unit time, every l…
论文提出经济实惠且高效的神经网络结构搜索算法EAS,使用RL agent作为meta-controller,学习通过网络变换进行结构空间探索.从指定的网络开始,通过function-preserving transformation不断重用其权重,EAS能够重用之前学习到的知识进行高效地探索新的结构,仅需要10 GPU days即可   来源:晓飞的算法工程笔记 公众号 论文: Efficient Architecture Search by Network Transformation 论文地…
参考:https://www.cnblogs.com/qiufeihai/archive/2012/03/15/2398455.html 最短路径问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2622    Accepted Submission(s): 825 Problem Description 给你n个点,m条无向边,每条…
目录 前言 概述 启发式的理解(重点) 优化问题的定义 个体编码 初始族群的创建 评价 配种选择 锦标赛 轮盘赌选择 随机普遍抽样选择 变异 单点交叉 两点交叉 均匀交叉 部分匹配交叉 突变 高斯突变 乱序突变 位翻转突变 均匀整数突变 环境选择 完全重插入(Pure reinsertion) 均匀重插入(Uniform reinsertion) 精英重插入(Elitist reinsertion) 精英保留重插入(Fitness-based reinsertion) 进化算法的python实现…
论文提出aging evolution,一个锦标赛选择的变种来优化进化算法,在NASNet搜索空间上,对比强化学习和随机搜索,该算法足够简洁,而且能够更快地搜索到更高质量的模型,论文搜索出的AmoebaNet-A在ImageNet上能达到SOTA   来源:[晓飞的算法工程笔记] 公众号 论文: Regularized Evolution for Image Classifier Architecture Search 论文地址:https://arxiv.org/abs/1802.01548…
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total Submission(s): 1197    Accepted Submission(s): 626 Problem Description There are N cities in our country, and M one-way roads connecting them. Now Li…
KPI Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 你工作以后, KPI 就是你的全部了. 我开发了一个服务,取得了很大的知名度.数十亿的请求被推到一个大管道后同时服务从管头拉取请求.让我们来定义每个请求都有一个重要值.我的KPI是由当前管道内请求的重要值的中间值来计算.现在给你服务记录,有时我想知道当前管道内请求的重要值得中间值.…
进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编码,种群初始化,交叉变异算子,经营保留机制等基本操作.与传统的基于微积分的方法和穷举方法等优化算法(具体介绍见博客[Math] 常见的几种最优化方法中的其他数学优化方法)相比,进化计算是一种成熟的具有高鲁棒性和广泛适用性的全局优化方法,具有自组织.自适应.自学习的特性,能够不受问题性质的限制,有效地…
差分进化算法 (Differential Evolution)   Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化的随机模型,通过反复迭代,使得那些适应环境的个体被保存了下来.但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码.基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性.同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和鲁棒…
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档适用人员:技术人员 提纲: 所谓异常流量 如何识别异常流量 Apriori如何工作 如何让 Nginx 拦截可疑 IP 0x00,所谓异常流量 有害的异常流量大概分为以下几种: 僵尸网络中的节点对主站发起无目的的密集访问: 黑客.白帽子或某些安全公司为了做漏洞扫描,对主站各个 Web 工程发起字典式…
基于自适应算法的PLC滴灌控制系统 陕西中际现代包装科技有限公司滴灌部 1.介绍 水资源正在成为一种珍贵的资源.城镇的市民使用成千上万立方的水来浇灌花园和绿地.他们依赖于使用固定灌溉计划的控制器.而这些控制器通常被编程为满足最大用水量,最终在凉爽的或阴天的日子里浪费了大量的水.农民的滴灌和喷灌系统也使用固定的灌溉控制器,因此在凉爽的日子里也浪费了大量的水,而且在生长季节开始,庄稼对水的需求是最小的. 本工作目的是开发开发自动的灌溉系统,使用单一的气候标准调整作物所需要的灌水深度.标准如:气温,总…
1 前言 目前,商用软件和共享软件绝大部份都是采用注册码授权的方式来保证软件本身不被盗用,以保证自身的利益.尽管很多常用的许多软件系统的某些版本已经被别人破解,但对于软件特殊行业而言,注册码授权的方式还是一种保护软件系统本身的一种有效的手段. 通常而言,注册码授权方式有以下几种方式: u  安装序列号方式:这是最为常用的方式,Mircosoft提供的产品(例如:Windows系列产品.Office系列产品等等)都是采用这种方式.通过一种复杂的算法生成安装序列号,在安装过程中,安装程序对用户输入的…
郑昀 基于杨海波的设计文档 创建于2015/8/13 最后更新于2015/8/25 关键词:异常流量.rate limiting.Nginx.Apriori.频繁项集.先验算法.Lua.ELK 本文档适用人员:技术人员 提纲: 所谓异常流量 如何识别异常流量 Apriori如何工作 如何让 Nginx 拦截可疑 IP 0x00,所谓异常流量 有害的异常流量大概分为以下几种: 僵尸网络中的节点对主站发起无目的的密集访问: 黑客.白帽子或某些安全公司为了做漏洞扫描,对主站各个 Web 工程发起字典式…
区块链中的共识算法 在比特币公链架构解析中,就曾提到过为了实现去中介化的设计,比特币设计了一套共识协议,并通过此协议来保证系统的稳定性和防攻击性. 并且我们知道,截止目前使用最广泛,也是最被大家接受的共识算法,是我们先前介绍过的POW(proof of work)工作量证明算法.目前市值排名前二的比特币和以太坊也是采用的此算法. 虽然POW共识算法取得了巨大的成功,但对它的质疑也从来未曾停止过. 其中最主要的一个原因就是电力消耗.据不完全统计,基于POW的挖矿机制所消耗的电量是非常巨大的,甚至比…
在图像处理实践中,将灰度图转化为二值图是非经常见的一种预处理手段. 在Matlab中,能够使用函数BW = im2bw(I, level)来将一幅灰度图 I.转化为二值图. 当中.參数level是一个介于0~1之间的值,也就是用于切割图像的阈值.默认情况下,它可取值是0.5. 如今问题来了,有没有一种依据图像自身特点来自适应地选择阈值的方法呢?答案是肯定的!我们今天就来介绍当中最为经典的Otsu算法(或称大津算法).该算法由日本科学家大津展之(Nobuyuki Otsu)于1979年提出.这个算…
基于模型的强化学习方法数据效率高,前景可观.本文提出了一种基于模型的元策略强化学习方法,实践证明,该方法比以前基于模型的方法更能够应对模型缺陷,还能取得与无模型方法相近的性能. 引言 强化学习领域近期取得的很多成就都是通过无模型强化学习算法 [1,2,3] 实现的.无模型(MF)算法倾向于实现最佳性能,通常可应用且易于实现. 然而,这是以数据密集为代价实现的,当与诸如神经网络的大容量函数近似器结合时,情况会恶化.它们的高样本复杂性阻碍其应用于机器人控制任务,在这些任务上收集数据代价高昂. 相比之…
  AdaBoost 算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高.   系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示方法——Haar-like矩形特征   矩形特征的值是所有白色矩形中点的亮度值的和减去所有灰色矩形中点的亮度值的和,所得到的差 具体特征可以用一个五元组…
根据容灾备份系统对备份类别的要求程度,数据库备份系统可以分为数据级备份和应用级备份.数据备份是指建立一个异地的数据备份系统,该系统是对原本地系统关键应用数据实时复制.当出现故障时,可由异地数据系统迅速恢复本地数据从而保证业务的连续性.应用级备份比数据备份层次更高,即在异地建立一套完整的.与本地数据库系统相当的备份数据库应用系统,同时备份本地数据.可以同本地应用系统互为备份,也可与本地应用系统共同工作,在灾难故障出现后,远程应用系统迅速接管或承担本地应用系统的业务运行.本文基于Rsync算法设计实…
在看这篇博文之前建议看一下上一篇匈牙利法解决二分图最大匹配问题: https://www.cnblogs.com/fangxiaoqi/p/10808729.html 这篇博文参考自:https://www.cnblogs.com/logosG/p/logos.html 最优匹配 我们这里先说一下什么叫做最优匹配(也被称作最大带权分配). 简而言之,最优匹配就是指在带权边的二分图中,求一个匹配使得匹配边上的权值和最大. 两个例子 例子1 出自wenr博客: http://www.cnblogs.…
论文提出增量式少样本目标检测算法ONCE,与主流的少样本目标检测算法不太一样,目前很多性能高的方法大都基于比对的方式进行有目标的检测,并且需要大量的数据进行模型训练再应用到新类中,要检测所有的类别则需要全部进行比对,十分耗时.而论文是增量式添加类别到模型,以常规的推理形式直接检测,十分高效且数据需求十分低,虽然最终的性能有点难看,但是这个思路还是可以有很多工作可以补的   来源:晓飞的算法工程笔记 公众号 论文: Incremental Few-Shot Object Detection 论文地…
引言 差分进化算法是基于群体智能理论的优化算法,是通过群体内个体间的合作与竞争而产生的智能优化搜索算法,它保留了基于种群的全局搜索策略,采用实数编码.基于差分的简单变异操作和"一对一"的竞争生存策略,降低了进化计算操作的复杂性. 差分进化算法的原理 差分进化算法是一种自组织最小化方法,利用种群中两个随机选择的不同向量来干扰现有向量,种群中的每一个向量都要进行干扰. 它通过把种群中的两个成员之间的加权差向量加到第三个成员上来产生新的参数向量,该操作成为"变异". 将变…
开发中,有时候,为了打造更好的用户体验,同时减轻服务器端的压力,需要对于一些如,手机号码,银行卡号,身份证号码进行格式校验 下面是判断银行卡号输入是否正确的代码(基于Luhn算法的格式校验): iOS代码: /** *  银行卡格式校验 * *  @param cardNo 银行卡号 * *  @return */ + (BOOL) checkCardNo:(NSString*) cardNo{ int oddsum = 0;     //奇数求和 int evensum = 0;    //偶…
项目内容:基于DES算法加密的防撞库密码系统 小组名:zqhzkzkj 目标:1.对用户输入的8位字符进行DES加密,要求用户输入8位密钥 2.对于不同的网站,不同的用户名生成不同的密码 小组成员:周岐浩.钟轲.郑凯杰 实验内容: 为了防止一个用户在不同的网站使用同一个密码,而导致一个网站被破译所有网站都被破译,于是我们修改了我们的项目. 分为四大步: 一.给定64bit的明文M,通过一个固定初始置换IP得到M0 二.进行16轮相同迭代运算,这些运算被称为轮函数f 三.对比特串R16L16使用逆…