We know that$$\tan t=\frac{e^{it}-e^{-it}}{i(e^{it}+e^{-it})}=\frac{e^{2i t}+1-2}{i(e^{2it}+1)}=-i(1-\frac{2}{e^{2it}+1}).$$Now we try to find the anti-derivative of $$f(t)=\frac{1}{e^{2it}+1}.$$We observe that $$\frac{1}{e^{2it}+1}=\frac{1}{(e^{i…
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 Sequences and Series 本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution Summary Given a function $f$, the series $$\sum_{n=0}^\infty {f^{(n)}(0)\over n!}x^n$$…
Back-propagation in a nerual network with a Softmax classifier, which uses the Softmax function: \[\hat y_i=\frac{\exp(o_i)}{\sum_j \exp(o_j)}\] This is used in a loss function of the form: \[\mathcal{L}=-\sum_j{y_j\log \hat y_j}\] where \(o\) is a v…
Problem Description MCA山中人才辈出,洞悉外界战火纷纷,山中各路豪杰决定出山拯救百姓于水火,曾以题数扫全场的威士忌,曾经高数九十九的天外来客,曾以一剑铸十年的亦纷菲,歃血为盟,盘踞全国各个要塞(简称全国赛)遇敌杀敌,遇佛杀佛,终于击退辽军,暂时平定外患,三人位置也处于稳态. 可惜辽誓不甘心,辽国征南大将军<耶律javac++>欲找出三人所在逐个击破,现在他发现威士忌的位置s,天外来客的位置u,不过很难探查到亦纷菲v所在何处,只能知道三人满足关系: arctan(1/s)…
Derivative of Softmax Loss Function A softmax classifier: \[ p_j = \frac{\exp{o_j}}{\sum_{k}\exp{o_k}} \] It has been used in a loss function of the form \[ L = - \sum_{j} y_j \log p_j \] where o is a vector. We need the derivative of \(L\) with resp…