Theano3.4-练习之多层感知机】的更多相关文章

来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classifying MNIST digits using Logistic Regression.(http://blog.csdn.net/shouhuxianjian/article/details/46375461).另外,它使用新的theano函数和概念: T.tanh, shared variab…
想直接学习卷积神经网络,结果发现因为神经网络的基础较弱,学习起来比较困难,所以准备一步步学.并记录下来,其中会有很多摘抄. (一)什么是多层感知器和反向传播 1,单个神经元 神经网络的基本单元就是神经元,一个神经元就是处理输入并输出的小玩意,下面是一个图   , 可以看到每一个输入都有自己的权重,权重和输入的值相乘,然后加上一个偏置b之后在经过一个函数f得到输出y,这个f就是激活函数,激活函数的作用是将非线性引入神经元的输出.因为大多数现实世界的数据都是非线性的,我们希望神经元能够学习非线性的函…
隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需隐含节点数,随隐含层数量增多指数下降. 过拟合,模型预测准确率在训练集上升,在测试集下降.泛化性不好,模型记忆当前数据特征,不具备推广能力.参数太多.Hinton教授团队,Dropout.随便丢弃部分输出数据节点.创造新随机样本,增大样本量,减少特征数量,防止过拟合.bagging方法,对特征新种采…
多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本质是bagging方法,相当于集成学习,注意dropout训练时设置为0~1的小数,测试时设置为1,不需要关闭节点 学习率难以设定:Adagrad等自适应学习率方法 深层网络梯度弥散:Relu激活取代sigmoid激活,不过输出层仍然使用sigmoid激活 对于ReLU激活函数,常用截断正态分布,避免0梯度和…
从零开始 前面了解了多层感知机的原理,我们来实现一个多层感知机. # -*- coding: utf-8 -*- from mxnet import init from mxnet import ndarray as nd from mxnet.gluon import loss as gloss import gb # 定义数据源 batch_size = 256 train_iter, test_iter = gb.load_data_fashion_mnist(batch_size) #…
1.引言 一个多层感知机(Multi-Layer Perceptron,MLP)可以看做是,在逻辑回归分类器的中间加了非线性转换的隐层,这种转换把数据映射到一个线性可分的空间.一个单隐层的MLP就可以达到全局最优. 2.模型 一个单隐层的MLP可以表示如下: 一个隐层的MLP是一个函数:$f:R^{D}\rightarrow R^{L}$,其中 $D$ 是输入向量 $x$ 的大小,$L$是输出向量 $f(x)$ 的大小: $f(x)=G(b^{(2)}+W^{(2)}(s(b^{(1)}+W^{…
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度学习框架中的sklearn,本文就将基于Keras,以手写数字数据集MNIST为演示数据,对多层感知机(MLP)的训练方法进行一个基本的介绍,而关于多层感知机的相关原理,请移步数据科学学习手札34:https://www.cnblogs.com/feffery/p/8996623.html,本文不再…
一.简介 机器学习分为很多个领域,其中的连接主义指的就是以神经元(neuron)为基本结构的各式各样的神经网络,规范的定义是:由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界的刺激作出的交互反应.而我们在机器学习中广泛提及的神经网络学习就是机器学习与神经网络的交叉部分,本篇就将介绍基本的神经元模型.感知机模型的知识以及更进一步的多层感知机的具体应用(注意,本篇介绍的内容只是当下流行的深度学习的铺垫,因此只使用了无GPU加速的相应模块,关于深度学习的知识.当下…
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的github地址上,可下载. 一.多层感知机(MLP)原理简介 多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,…
多层感知机 定义模型的参数 定义激活函数 定义模型 定义损失函数 训练模型 小结 多层感知机 import torch import numpy as np import sys sys.path.append('..') import d2lzh_pytorch as d2l 我们仍然使用Fashion_MNIST数据集,使用多层感知机对图像进行分类 batch_size = 256 train_iter,test_iter = d2l.get_fahsion_mnist(batch_size…