HIVE的数据类型】的更多相关文章

在上篇文章里,我列举了一个简单的hive操作实例,创建了一张表test,并且向这张表加载了数据,这些操作和关系数据库操作类似,我们常把hive和关系数据库进行比较,也正是因为hive很多知识点和关系数据库类似. 关系数据库里有表(table),分区,hive里也有这些东西,这些东西在hive技术里称为hive的数据模型.今天本文介绍hive的数据类型,数据模型以及文件存储格式.这些知识大家可以类比关系数据库的相关知识. 首先我要讲讲hive的数据类型. Hive支持两种数据类型,一类叫原子数据类…
官方帮助文档:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL Hive的数据类型 -- 扩展数据类型data_type : primitive_type | array_type | map_type | struct_type | union_type -- (Note: Available in Hive 0.7.0 and later) array_type : ARRAY < data_type >…
Hive的数据类型 Hive的数据类型 前面说过,Hive是一个数据仓库,相当于一个数据库.既然是数据库,那么就必须能创建表,既然有表,那么当中就有列,列中就有对应的类型 总的来讲,hive的数据类型可以分为三类: 基本数据类型: tinyint/smallint/int/bigint:整数类型 float/double:浮点数类型 boolean:布尔类型 string:字符串类型 复杂数据类型 Array:数组类型,由一系列相同数据类型的元素组成 Map:集合类型,包含key–>value键…
Hive之数据类型   (本文是基于多篇文章根据个人理解进行的整合,参考的文章见末尾的整理) 数据类型 Hive支持两种数据类型,一类叫原子数据类型,一类叫复杂数据类型.原子数据类型包括数值型.布尔型和字符串类型,具体如下表所示: 原子数据类型包括数值型.布尔型和字符串类型,具体如下表所示: 基本数据类型 类型 描述 示例 TINYINT 1个字节(8位)有符号整数 1 SMALLINT 2字节(16位)有符号整数 1 INT 4字节(32位)有符号整数 1 BIGINT 8字节(64位)有符号…
Hive复杂数据类型 1.Array数据类型的使用 1.1.创建数据库表,以array作为数据类型 hive (hive_demo1)> create table stu_test(name array<string>,phone array<string>) > row format delimited fields terminated by'\t' > collection items terminated by','; OK 1.2.在/opt/datas…
Hive支持关系型数据库中的大多数基本数据类型,同时也支持关系型数据库中很少出现的3种集合数据类型. 和大多数数据库相比,Hive具有一个独特的功能,那就是其对于数据在文件中的编码方式具有非常大的灵活性. 大多数数据库对数据具有完全的控制,其包括对数据存储到磁盘的过程的控制,也包括对数据生命周期的控制. 而Hive将这些方面的控制权交给用户,使用户更容易地使用各种各样的工具来管理和处理数据. 一.  基本数据类型 表1-1 Hive基本数据类型 数据类型 长度 例子 TINYINT 1byte有…
1. 引言 在分析广告日志时,会有这样的多维分析需求: 曝光.点击用户分别有多少? 标签能覆盖多少广告用户? 各个标签(标注)类别能覆盖的曝光.点击在各个DSP上所覆盖的用户数 -- 广告数据与标签数据join之后,存储orc file的schema如下: create external table default.ad_tag ( uid string ,dsp string ,view string ,click string ,tags array<struct<tag:string,l…
Hive 支持关系型数据库中的大多数据基本数据类型,同时也支持3种集合类型:   3.1 Hive 的基本数据类型 支持多种不同他度的整形和浮点型数据类型,具体如下(全都是保留字): tinyint    1byte 有符号整数 smalint    2byte有符号号数 int    4byte有符号号数 bigint    8byte有符号号数 boolean    布尔类型, true 或者 false float    单精度浮点数 double    双精度浮点数 string    …
Spark SQL使用时需要有若干“表”的存在,这些“表”可以来自于Hive,也可以来自“临时表”.如果“表”来自于Hive,它的模式(列名.列类型等)在创建时已经确定,一般情况下我们直接通过Spark SQL分析表中的数据即可:如果“表”来自“临时表”,我们就需要考虑两个问题:   (1)“临时表”的数据是哪来的? (2)“临时表”的模式是什么?   通过Spark的官方文档可以了解到,生成一张“临时表”需要两个要素:   (1)关联着数据的RDD: (2)数据模式:   也就是说,我们需要将…
hive的高级数据类型主要包括:数组类型.map类型.结构体类型.集合类型,以下将分别详细介绍. 1)数组类型 array_type:array<data_type> -- 建表语句 create table test.array_table( name   string, age    int, addr   array<string> ) row format delimited fields terminated by ',' collection items termina…