倍增(在线)求LCA】的更多相关文章

倍增法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 倍增法是通过一个数组来实现直接找到一个节点的某个祖先,这样我们就可以在O(logn)的时间内求出求出任意节点的任意祖先. 然后先把两个节点中转化为深度相同的节点,然后一起向上递增,知道找到相同的节点,该节点就是这两个节点的最近公共祖先. 代码实现: #include<cstdio> #include<iostream> #define N 42000…
How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 14685    Accepted Submission(s): 5554 Problem Description There are n houses in the village and some bidirectional roads connecting…
倍增法求lca(最近公共祖先) 基本上每篇博客都会有参考文章,一是弥补不足,二是这本身也是我学习过程中找到的觉得好的资料 思路: 大致上算法的思路是这样发展来的. 想到求两个结点的最小公共祖先,我们可以先把两个的深度提到同一水平,在一步一步往上跳,直到两个结点有了一个公共祖先,依照算法流程,这就是least common ancestor. 但是如果这样一步步地往上未免太让人着急,为了提高一下效率,便不再每次只跳一步,而跳\(2^i\)步.一般的,先这样蹦蹦跳跳跳上去直到两个结点相平,在两个一起…
Misha and Grisha are funny boys, so they like to use new underground. The underground has n stations connected with n - 1 routes so that each route connects two stations, and it is possible to reach every station from any other. The boys decided to h…
我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况: 1.两结点的深度相同. 2.两结点深度不同. 第一步都要转化为情况1,这种可处理的情况. 先不考虑其他, 我们思考这么一个问题: 对于两个深度不同的结点, 把深度更深的那个向其父节点迭代, 直到这个迭代结点和另一个结点深度相同, 那么这两个深度相同的结点的Lca也就是原两个结点的Lca. 因此第二种情况转化成第一种情况来求解Lca是可行的. 这里我们使用倍增法以最快的速度找到相同的深度,然后开始求LCA.求LCA使用倍增法…
                                                                                                                                                         ----代码都是  HDU 2586  "How far away" 为例     倍增求LCA 树上倍增法. 设F[x,k] 表示x的2的k次方辈祖先,即 由x向上走2的k次方到达的…
COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to N.Each node has an integer weight. We will ask you to perform the following operation: u v k : ask for the kth minimum weight on the path from node u …
题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无意中看到树上莫队,只是拿来练练,没有想到这题的难点不在于树上莫队,而是判断LCA是否在两点之间的路径上的问题.耗时1天. 树上莫队的搞法就是: (1)DFS一次,对树进行分块,分成sqrt(n)块,每个点属于一个块.并记录每个点的DFS序. (2)将m个询问区间用所属块号作为第一关键字,DFS序作为第二关键字…
对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点). dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v][k] = anc[anc[v][k - 1]][k - 1]  (从v向上2k步即为从v向上2(k - 1)步再向上2(k - 1)步) 求出其他anc[v][k]的值 lca(u, v)函数寻找u和v的lca, 首先把u和v调整到一个高度.如果此时u和v重合,那么这就是我们要找的lca,如果他…
1.cojs 186. [USACO Oct08] 牧场旅行 ★★   输入文件:pwalk.in   输出文件:pwalk.out   简单对比时间限制:1 s   内存限制:128 MB n个被自然地编号为1..n奶牛(1<=n<=1000)正在同样被方便的编号为1..n的n个牧场中吃草.更加自然而方便的是,第i个奶牛就在第i个牧场中吃草. 其中的一些对牧场被总共的n-1条双向通道的一条连接.奶牛可以通过通道.第i条通道连接的两个牧场是A_i和B_i(1<=A_i<=N;1&l…
LCA,最近公共祖先,这是树上最常用的算法之一,因为它可以求距离,也可以求路径等等 LCA有两种写法,一种是倍增思想,另一种是Tarjan求法,我们可以通过一道题来看一看, 题目描述 欢乐岛上有个非常好玩的游戏,叫做“紧急集合”.在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要花费一个游戏币. 参加游戏的人三人一组,开始的时候,所有人员均任意分散在各个等待点上(每个点同时允许多个人等待),每个人均带有…
对于有根树T的两个结点u.v,最近公共祖先x=LCA(u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,根据定义可以看出14和15的最近公共祖先是10,   15和16的最近公共祖先是1,     6和5的最近公共祖先是5...... 假如我要求14和16的最近公共祖先,要怎么做呢? 最暴力的做法,就是先看14和16在不在同一层,如果他们不在同一层,那么较深的那个点往上爬(即距离根较远的那个点) 一直爬,爬到两点的深度一样 当两点深度一样时,判断他们是否在同一个点上,如果不…
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include<cstring> 4 #include<iostream> 5 using namespace std; 6 #define N 500010 7 #define D 20 8 9 int n,m,root,len=0; 10 int last[N],fa[N][D],dep[N];…
https://loj.ac/problem/10131 #include<bits/stdc++.h> using namespace std; struct node{ int to,next; }e[]; ],num=,N,n,m,ans; ][],depth[]; ],w[]; inline void add(int x,int y) { e[++num].to=y,e[num].next=head[x],head[x]=num; } inline void read(int &…
#include <iostream> #include <vector> #include <algorithm> #define MAXN 100 //2^MAXLOG2>=最大深度 #define MAXLOG2 7 using namespace std; vector<int>G[MAXN]; int depth[MAXN]; int ancestor[MAXN][MAXLOG2]; void creat()//输入并存储树 { int n,…
在此之前,我写过另一篇博客,是倍增(在线)求LCA.有兴趣的同学可以去看一看.概念以及各种暴力就不在这里说了,那篇博客已经有介绍了. 不会ST算法的同学点这里 ST(RMQ)算法在线求LCA 这个算法的思想,就是将LCA问题转化成RMQ问题. 怎么将LCA转成RMQ? 我们首先用dfsO(N)遍历一遍.比如下图: 得到一个dfs序(从儿子回到父亲也要算一遍): 1->2->4->7->4->8->4->2->5->2->6->9->6…
http://poj.org/problem?id=1986 题意:给出一棵n个点m条边的树,还有q个询问,求树上两点的距离. 思路:这次学了一下倍增算法求LCA.模板. dp[i][j]代表第i个点的第2^j个祖先是哪个点,dp[i][0] = i的第一个祖先 = fa[i].转移方程:dp[i][j] = dp[dp[i][j-1][j-1]. #include <cstdio> #include <cstring> #include <algorithm> #in…
目录 一.定义 二.LCA的实现流程 1. 预处理 2. 计算LCA 三.例题 例1:P3379 [模板]最近公共祖先(LCA) 四.树上差分 1. 边差分 2. 点差分 3. 例题 一.定义 给定一颗有根树,若节点z既是节点x的祖先,也是节点y的祖先,则称z是x,y的公共祖先.在x,y的祖先中,深度最大的一个节点称为x,y的最近公共祖先(Least Common Ancestors),记做LCA. 如图:LCA(5,7)=2:LCA(3,8)=1:LCA(6,10)=6. 二.LCA的实现流程…
(YYL: LCA 有三种求法, 你们都知道么?) (众神犇: 这哪里来的傻叉...) 1. 树上倍增 对于求 LCA, 最朴素的方法是"让两个点一起往上爬, 直到相遇", "如果一开始不在同一深度, 先爬到同一深度". 树上倍增求 LCA 的方法同样基于这个道理, 只不过利用了倍增思想从而加速了"向上爬"的操作. 也就是说, 每次向上爬的高度不是 1, 而是 2 的幂. 我们用 $f(i, j)$ 表示从节点 $i$ 向上爬 $2^j$ 的高度…
倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂 关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往上走 2j 个节点 求 LCA 的时候先倍增让两点深度一样,再倍增求 另外丢两个链接,这两个有详细讲解 ST 算法 http://www.cnblogs.com/hadilo/p/5837517.html Tarajan 算法 http://www.cnblogs.com/hadilo/p/5840…
这几天,提高B组总是有求LCA的题.由于我是蒟蒻,所以老是做不出来,直接上暴力.现在才弄懂. 没耐心看前面部分的大神门可以直接看后面. ST(RMQ)算法(在线)求LCA LCA是什么? 在一棵树上,两个节点的最近公共祖先就是LCA. 求LCA有什么用? 我见到最多的是,在一些题目中,我们需要找出树上两个点之间的路径,其中就要借助LCA,作为一个中转点. 举个例子: 我们要找出两个红色的点之间的路径. 黄色的这条路就是我们要求的. 怎么找? 暴力方法1 BFS或DFS遍历一遍.时间复杂度显然是O…
1.tarjan求lca 思想: void tarjan(int u,int f){ for(int i=---){//枚举边 if(v==f) continue; dfs(v); //继续搜 unionn(v);//合并 vis[v]=; //标记 } for(int i){// 和u有关的询问 if(vis[v]) lca=find(v); //若访问过,lca为find(v) } } 模板代码 #include<bits/stdc++.h> #define rep(i,x,y) for(…
LCA 描述 给一棵有根树,以及一些询问,每次询问树上的 2 个节点 A.B,求它们的最近公共祖先. !强制在线! 输入 第一行一个整数 N. 接下来 N 个数,第 i 个数 F i 表示 i 的父亲是 F i. 若 F i = 0,则 i 为树根. 接下来一个整数 M. 接下来 M 行,每行 2 个整数 A.B,询问节点(A xor LastAns).(Bxor LastAns)的最近公共祖先. 其中 LastAns 为上一个询问的答案,一开始 LastAns = 0. 输出 对每一个询问输出…
前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳2^j次后的节点 可以转移为 father[i][j]=father[father[i][j-1]][j-1] (此处注意循环时先循环j,再循环i) 然后dfs求出各个点的深度depth 整体思路: 先比较两个点的深度,如果深度不同,先让深的点往上跳,浅的先不动,等两个点深度一样时,if 相同 直接…
LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4)一个点地一个点地往上跳,直到到某个点(3)和另外那个点(5)的深度一样 然后两个点一起一个点地一个点地往上跳,直到到某个点(就是最近公共祖先)两个点“变”成了一个点 不过有没有发现一个点地一个点地跳很浪费时间? 如果一下子跳到目标点内存又可能不支持,相对来说倍增的性价比算是很高的 倍增的话就是一次…
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每行包含两个正整数x.y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树). 接下来M行每行包含两个正整数a.b,表示询问a结点和b结点的最近公共祖先. 输出格式: 输出包含M行,每行包含一个正整数,依次为每一个询问的结果. 输入输出样例 输入样例#1: 复制 5 5 4 3 1 2 4…
先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你不会吧:unamused:...) 思想 树上倍增嘛,顾名思义就是倍增 相信倍增大家都不默认,著名的rmq问题的$O(n*logn)$的解法就是利用倍增实现的 在树上倍增中,我们用 $f[j][i]$表示第$j$号节点,跳了$2^j$步所能到达的节点 $deep[i]$表示$i$号节点的深度 然后用…
倍增求LCA LCA函数返回(u,v)两点的最近公共祖先 #include <bits/stdc++.h> using namespace std; *; struct node { int v,val,next; node(){} node(int vv,int va,int nn):v(vv),val(va),next(nn){} }E[N]; int n,m; ],dep[N]; void init() { tot = ; memset(head,,sizeof(head)); mems…
倍增求lca模板 https://www.luogu.org/problem/show?pid=3379 #include<cstdio> #include<iostream> #include<cmath> #include<cstring> using namespace std; int t,n,cnt,m; int x,y; ][],p,root; ]; ]; ]; ; struct node { int next,to; }e[*]; inline…
思路 运用树上倍增法可以高效率地求出两点x,y的公共祖先LCA 我们设f[x][k]表示x的2k辈祖先 f[x][0]为x的父节点 因为从x向根节点走2k 可以看成从x走2k-1步 再走2k-1步 所以对于1≤k≤logn 有f[x][k]=f[f[x][k-1]][k-1] (类似二分思想) 预处理: 因此我们可以对树进行遍历后得到所有f[x][0] 再计算出f数组的所有值 求LCA: 设dep[x]为x的深度 设dep[x]≥dep[y](否则 可以交换x和y) 使用二进制拆分 把x和y调整…