TensorFlow使用RNN实现手写数字识别】的更多相关文章

学习,笔记,有时间会加注释以及函数之间的逻辑关系. # https://www.cnblogs.com/felixwang2/p/9190664.html # https://www.cnblogs.com/felixwang2/p/9190664.html # TensorFlow(十二):使用RNN实现手写数字识别 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据…
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ------------------------------------ 循环神经网络RNN 相关名词: - LSTM:长短期记忆 - 梯度消失/梯度离散 - 梯度爆炸 - 输入控制:控制是否把当前记忆加入主线网络 - 忘记控制:控制是否暂时忘记主线网络,先看当前分线 - 输出控制: 控制输出是否要考虑要素 - 数据有顺序的/序列化 - 前面的影响后面的 RNN L…
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即测试集和验证集 [2]: 引入 tensorflow 启动InteractiveSession(比session更灵活) [3]: 定义两个初始化w和b的函数,方便后续操作 [4]: 定义卷积和池化函数,这里卷积采用padding,使得 输入输出图像一样大,池化采取2x2,那么就是4格变一格 [5]…
边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190602.html # TensorFlow(十):卷积神经网络实现手写数字识别以及可视化 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.rea…
上代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #载入数据集 mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) # 输入图片是28*28 n_inputs = 28 #输入一行,一行有28个数据 max_time = 28 #一共28行 lstm_size = 100 #隐层单元 n_c…
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件是二进制内容. train-images-idx3-ubyte.gz:  training set images     图片样本,用来训练模型 train-labels-idx1-ubyte.gz:  training set labels     图片样本对应的数字标签 t10k-images-…
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com Overview 本文系“SkySeraph AI 实践到理论系列”第一篇,咱以AI界的HelloWord 经典MNIST数据集为基础,在Android平台,基于TensorFlow,实现CNN的手写数字识别.Code~ Practice Environmen…
通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Python) 运行程序后得的四个文件,再通过手写的图片判断识别概率 代码: import numpy as np import tensorflow as tf from flask import Flask, jsonify, render_template, request import numpy a…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…
# 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) # 获取数据 mnist是一个轻量级的类,其中以Numpy数组的形式中存储着训练集.验证集.测试集. #…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
一 感知器 感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695 感知器(Perceptron)是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1.这种算法的局限性很大: 只能将数据分为 2 类; 数据必须是线性可分的; 虽然有这些局限,但是感知器是 ANN 和 SVM 的基础,理解了感知器的原理,对学习ANN 和 SVM 会有帮助,所以还是值得花些时间的. 感知器可以表示为 f:Rn ->…
官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for Experts - https://www.tensorflow.org/get_started/mnist/pros 版本: TensorFlow 1.2.0 + Flask 0.12 + Gunicorn 19.6 相关文章: TensorFlow 之 入门体验 TensorFlow 之 手写…
首先,关于神经网络,其实是一个结合很多知识点的一个算法,关于cnn(积卷神经网络)大家需要了解: 下面给出我之前总结的这两个知识点(基于吴恩达的机器学习) 代价函数: 代价函数 代价函数(Cost Function )是定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均. 具体的了解请看我的博客: https://blog.csdn.net/qq_40594554/article/details/97389489 梯度下降: 梯度下降一般讲解采用单变量梯度下降,但是一般在程序中常用…
softmax函数的作用   对于分类方面,softmax函数的作用是从样本值计算得到该样本属于各个类别的概率大小.例如手写数字识别,softmax模型从给定的手写体图片像素值得出这张图片为数字0~9的概率值,这些概率值之和为1.预测的结果取最大的概率表示的数字作为这张图片的分类. 可以从下面这张图理解softmax x1,x2,x3代表输入的值,b1,b2,b3代表类别1,2,3的偏置量,是因为输入的值可能存在无关的干扰量. 将上图写成等式 \[ \left[\begin{matrix}tem…
一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点:   1.将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点 2.机器学习算法中,特征之间距离的计算或相似度的常用计算方法都是基于欧式空间的 3.将离散型特征使用one_hot编码,会让特征之间的距离计算更加合理 import tensorflow as tf #MNIST数据集读取 import ten…
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这个疑问昨晚研究了下,利用这篇文章来记录下自己的一些心得! 以下这个图片是我随机写的一串数字,我的目标是利用训练好的模型来识别出图片里面的手写数字,开始实战! 2层卷积神经网络的训练: from tensorflow.examples.tutorials.mnist import input_data…
一.前言 为了更好的理解Neural Network,本文使用Tensorflow实现一个最简单的神经网络,然后使用MNIST数据集进行测试.同时使用Tensorboard对训练过程进行可视化,算是打响学习Tensorflow的第一枪啦. 看本文之前,希望你已经具备机器学习和深度学习基础. 机器学习基础可以看我的系列博文: https://cuijiahua.com/blog/ml/ 深度学习基础可以看吴恩达老师的公开课: http://mooc.study.163.com/smartSpec/…
MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/   一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集被分成两部分:60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test)   二.TensorFlow实现MNIST手写数字识别 (1)构建一个只有输入层和输出层的简单神经网络模型,使用二次代价函数和梯度下降算法进行优化:代码如下: #TensorFlow实…
一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training set images,training set labels training set包括60000个样本,test set包括10000个样本. test set中前5000个样本来自原始的NISTtraining set,后5000个样本来自原始的NIST test set,因此,前5000个样本比…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果. 数据准备 MNIST 数据集下载 MNIST 数据集可以从 THE MNIST DATABASE of handwritten digits 的网站直接下载. 网址:http://yann.lecun.com/exdb/mnist…
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神经网络的整个过程. 一 .MNIST手写数字数据集介绍 MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一,通常这个数据集都会被作为深度学习的入门案例.数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/…
Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflow版本:1.* 程序流程图 了解mnist数据集 mnist数据集:mnist数据集下载地址   MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png.tar.gz文件 文件夹内包括两个文件夹:training和validation,其中training文件夹下包括60000个训练图片validation下包括10000个评估图片,图片为28*28像素,分别放在0~9十个文件夹中. 程序总体流程和上一篇文章介绍的BMI分析程序基本一致,毕竟都是多元…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
上周在搜索关于深度学习分布式运行方式的资料时,无意间搜到了paddlepaddle,发现这个框架的分布式训练方案做的还挺不错的,想跟大家分享一下.不过呢,这块内容太复杂了,所以就简单的介绍一下paddlepaddle的第一个"hello word"程序----mnist手写数字识别.下一次再介绍用PaddlePaddle做分布式训练的方案.其实之前也写过一篇用CNN识别手写数字集的文章,是用keras实现的,这次用了paddlepaddle后,正好可以简单对比一下两个框架的优劣.  …
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70.64 KB (原始地址) :nnhandwrittencharreccssource.zip 介绍 这是一篇基于Mike O'Neill 写的一篇很棒的文章:神经网络的手写字符识别(Neural Network for Recognition of Handwritten Digits)而给出的一个…
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p…
KNN实现手写数字识别 博客上显示这个没有Jupyter的好看,想看Jupyter Notebook的请戳KNN实现手写数字识别.ipynb 1 - 导入模块 import numpy as np import matplotlib.pyplot as plt from PIL import Image from ld_mnist import load_digits %matplotlib inline 2 - 导入数据及数据预处理 import tensorflow as tf # Impo…