实数$x,y$满足$x^2+y^2=20,$求$xy+8x+y$的最大值___ 法一:$xy\le\dfrac{1}{4}x^2+y^2,8x\le x^2+16,y\le\dfrac{1}{4}y^2+1,$故$xy+8x+y\le\dfrac{5}{4}(x^2+y^2)+17=42$法二:$(xy+8x+y)^2\le (x^2+8^2+y^2)(y^2+x^2+1^2)=84*21=42^2$法三:记$f(x,y,k)=xy+8x+y-k(x^2+y^2-20)$,令$f^{'}_x=0…