[机器学习] k近邻算法】的更多相关文章

算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 && 分类决策规则 2. k=1, 即只取最近点,容易过拟合,k取较大值,容易欠拟合.k值越小,模型越复杂.k = 3 or 5 works well. 3. k近邻算法的一个实现:kd树(k-k维空间,二叉树),分两步:构造kd树--搜索kd树.复杂度O(logN). 下图是一个kd树及对应二叉树: 4.…
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性. 数据预备,这里使用random函数生成10*2的矩阵作为两列特征值,1个10个元素数组作为类别值 import numpy as npimport ma…
KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k,X_train,y_train,x): assert 1<=k<X_train.shape[0],"k must be valid" assert X_train.shape[0] == y_train.shape[0],\ "the size of X_train…
(一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以往病人体内的肿瘤状况,红色是良性肿瘤.蓝色是恶性肿瘤.显然这与发现时间的早晚以及肿瘤大小有密不可分的关系,那么当再来一个病人,我怎么根据时间的早晚以及肿瘤大小推断出这个新的病人体内的肿瘤(图中的绿色)是良性的还是恶性的呢? k近邻的思想便可以在这里使用,我根据距离(至于距离是什么样的距离,我们后面会…
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import operator from collections import Counter #KNN需要测试集,训练集,标签和k值 #测试集:你需要测试的数据 #训练集:给定的标准数据 #标签:每个标准数据的类别 #k值 :测试集和训练集相比较下前K个最相识的训练集的值 # 用KNN算法找出测试集的类别 #…
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更好的体验. 本文内容介绍机器学习的K近邻算法,用它处理分类问题.分类问题的目标是利用采集到的已经经过分类处理的数据来预测新数据属于何种类别. K近邻算法 K近邻算法对给定的某个新数据,让它与采集到的样本数据点分别进行比较,从中选择最相似的K个点,然后统计这K个点中出现的各个类别的频数,并判定频数最高…
机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空间中的K个最相似(即特征空间最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 我们采用一个图来进行说明(如下): 图中的蓝色小正方形和红色的小正方形属于两类不同的样本数据,图正中间的绿色的圆代表的是待分类的数据.现在我们可以根据K最近邻算法来判断绿色的圆属于哪一类数据? 如果K=3,绿色圆点的…
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集就是模型本身: 思想极度简单: 应用数学知识少(近乎为零): 效果少: 可以解释机械学习算法使用过程中的很多细节问题 更完整的刻画机械学习应用的流程: 2)思想: 根本思想:两个样本,如果它们的特征足够相似,它们就有更高的概率属于同一个类别: 问题:根据现有训练数据集,判断新的样本属于哪种类型: 方…
一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Learning in Action一书和Ng的公开课,当然仅有这些是远远不够的,更深入的研究分析可以参见其他国外的论文及站点,此处不再一一列举.机器学习更多的是建模应用,这里仅是一个概要总结,并归纳分析各种算法优缺点,这些都是要了如指掌并且非常熟悉的. 关于机器学习: 基本上目前互联网公司的机器学习/…
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中很多细节问题 更完整的刻画机器学习应用的流程 import numpy as np import matplotlib.pyplot as plt 实现我们自己的 kNN 创建简单测试用例 raw_data_X = [[3.393533211, 2.331273381], [3.110073483,…
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k 近邻算法的输入为实例的特征向量,对应于特征空间的点:输出为实例的类别,可以取多类.k 近邻算法假设给定一个训练数据集,其中的实例类别已定.分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预测.因此,k近邻算法不具有显式的学习过程. k 近邻算法实际上利用训练数据集对…
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如有新的数据加入,需要判断这个新的数据属于数据集中的哪一类 我们添加一个新的数据,重新绘制散点图 No.6. kNN的实现过程——计算x到训练数据集中每个点的距离 No.7. kNN的实现过程——使用argsort来获取距离x由近到远的点的索引组成的向量,进行保存 No.8. kNN的实现过程——指定…
摘要:K近邻(k-NearestNeighbor,K-NN)算法是一个有监督的机器学习算法,也被称为K-NN算法,由Cover和Hart于1968年提出,可以用于解决分类问题和回归问题. 1. 为什么要学习k-近邻算法 k-近邻算法,也叫KNN算法,是一个非常适合入门的算法 拥有如下特性: ● 思想极度简单 ● 应用数学知识少(近乎为零) ● 对于各位开发者来说,很多不擅长数学,而KNN算法几乎用不到数学专业知识 ● 效果好 ○ 虽然算法简单,但效果出奇的好 ○ 缺点也是存在的,后面会进行讲解…
0x00 概述   K近邻算法是机器学习中非常重要的分类算法.可利用K近邻基于不同的特征提取方式来检测异常操作,比如使用K近邻检测Rootkit,使用K近邻检测webshell等. 0x01 原理   距离接近的事物具有相同属性的可能性要大于距离相对较远的. 这是K邻近的核心思想. K邻近 K-Nearest Neighbor,KNN 算法,KNN指K个最近的邻居,可认为每个样本都能用与它最相近的K个邻居来代表. 算法核心思想 一个样本在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该…
一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近邻算法,就是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(就是上面提到的K个邻居),如果这K个实例的多数属于某个类,就将该输入实例分类到这个类中,如下图所示.                                上图中有两种不同类别的样本数据,分别用蓝色正…
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def makePhoto(returnMat,classLabelVector): #创建散点图 fig = plt.figure() ax = fig.add_subplot(111) #例如参数为349时,参数349的意思是:将画布分割成3行4…
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据的…
算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. 度量每个特征的程度,将其数字化. 所有特征值构成元组,作为该对象的坐标. 计算待检测对象和所有已知对象的距离,选择距离最接近的k个已知对象 (k近邻中的k来源于此). 这k个对象中出现次数最多的分类就是待检测对象的分类. 重要前提: 需要有一批已经正确归类了的对象存在.也就是通常说的训练数据. 重…
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理. 准备数据:使用Python解析.预处理数据. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化. 测试算法:计算错误率. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类. 实战内容: 海伦女士一直使用在线约会网站寻找适合自己…
六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocessing.py import numpy as np class StandardScaler: def __init__(self): self.mean_ = None self.scale_ = None def fit(self, X): """根据训练数据集X获得数据的均…
  一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提出的一种分类算法. 计算距离公式: 两个样本的距离可以通过如下公式计算,又叫欧式距离. 比如说,a(a1,a2,a3),b(b1,b2,b3)   欧式距离 二.K近邻算法的实现 sk-learn近邻算法API sklearn.neighbors.KNeighborsClassifier(n_nei…
k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后,将新数据的每个特征和样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签作为新数据的标签.一般来说,我们只选取样本数据中前k个最相似的数据. Java实现: KNNData.java package KNN; public class KNNData implements C…
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门算法. 参考内容如下:http://www.cnblogs.com/charlesblc/p/6193867.html 1.kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. 最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据.通常K不大于20.最后选择K个最相似数据中出现次数最多的分类.最为新的数据分类. 可是K~近邻算法必须保存所有的数据集.假设训练数据集非常大,必须使用打量的存储空间.此外,因为必须对数据集中每一个数据集计算距离值,实际使用起来会非常耗时间.…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中.根据这个说法,咱们来看下引自维基百科上的…
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将…
什么是K近邻? K近邻一种非参数学习的算法,可以用在分类问题上,也可以用在回归问题上. 什么是非参数学习? 一般而言,机器学习算法都有相应的参数要学习,比如线性回归模型中的权重参数和偏置参数,SVM的C和gamma参数,而这些参数的学习又依赖一定的学习策略.相比较而言,k近邻算法可以说是最简单,也是最容易理解的一种机器学习算法了. K近邻算法思想? 具体而言,在一个待测试样本周围找K个最近的点,然后根据这k个点进行决策,如果是分类问题,决策结果就是K个点中出现最多的类别:如果是回归问题,结果值为…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…