import tensorflow as tf import numpy as np import math import time import cifar10 import cifar10_input """ Created on Tue Nov 27 17:31:35 2018 @author: zhen """ max_steps = 1000 # 下载cifar10数据集的默认路径 batch_size = 128 data_dir =…
基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测和混淆矩阵 过滤器的可视化 Theano层的功能和特征提取 作者:Christian S.Peron 译者:刘帝伟 摘要:本文展示了如何基于nolearn使用一些卷积层和池化层来建立一个简单的ConvNet体系结构,以及如何使用ConvNet去训练一个特征提取器,然后在使用如SVM.Logistic…
​NOTES:现如今,芯片行业无比火热啊,无论是前景还是钱景,国家芯片战略的发布,公司四五十万的年薪,着实令人非常的向往,为了支持芯片设计者,集成了工作.科研.竞赛于一体的<基于 SoC 的卷积神经网络车牌识别系统设计>专栏项目,这是在一位海归教授的带领之下的整个团队辛勤耕耘的结晶,希望大家能够在理论结合实践的指导之下,不断地提高自己的数字芯片设计技术能力. 1.项目引言 工作求职:能够在简历上添加一笔较大的项目,集成了 AI.SoC.系统级.FPGA.ARM 以及 Verilog.C.Pyt…
NOTES: 这是第三届全国大学生集成电路创新创业大赛 - Arm 杯 - 片上系统设计挑战赛(本人指导的一个比赛).主要划分为以下的 Top5 重点.难点.亮点.热点以及创新点:1.通过 Arm Cortex-M3 CPU 软核 IP 在 Xilinx Artix-7 纯 FPGA 平台上构建一个 SoC 片上系统,该系统一方面能够通过 HDMI 接口,在显示屏上实时显示 OV5640 摄像头所采集的车牌视频数据(比特流的生成是通过交叉编译的方式,即 Verilog 编译与 C 编译):2.该…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN)的实现,本文主要重在理解原理和底层实现. 一.概述 1.1 卷积神经网络(CNN) 卷积神经网络(CNN)是一种具有局部连接.权重共享和平移不变特性的深层前馈神经网络. CNN利用了可学习的kernel卷积核(filter滤波器)来提取图像中的模式(局部和全局).传统图像处理会手动设计卷积核(例如高…
https://adeshpande3.github.io/adeshpande3.github.io/ https://blog.csdn.net/weiwei9363/article/details/79112872 https://blog.csdn.net/and_w/article/details/70336506 https://hackernoon.com/visualizing-parts-of-convolutional-neural-networks-using-keras-…
现有的当前最佳机器翻译系统都是基于编码器-解码器架构的,二者都有注意力机制,但现有的注意力机制建模能力有限.本文提出了一种替代方法,这种方法依赖于跨越两个序列的单个 2D 卷积神经网络.该网络的每一层都会根据当前生成的输出序列重新编码源 token.因此类似注意力机制的属性适用于整个网络.该模型得到了非常出色的结果,比当前最佳的编码器-解码器系统还要出色,而且从概念上讲,该模型也更加简单.参数更少. 引言 深度神经网络对自然语言处理技术造成了深远的影响,尤其是机器翻译(Blunsom, 2013…
无论是之前学习的MNIST数据集还是Cifar数据集,相比真实环境下的图像识别问题,有两个最大的问题,一是现实生活中的图片分辨率要远高于32*32,而且图像的分辨率也不会是固定的.二是现实生活中的物体类别很多,无论是10种还是100种都远远不够,而且一张图片中不会只出现一个种类的物体.为了更加贴近真实环境下的图像识别问题,由李飞飞教授带头整理的ImageNet很大程度上解决了这个问题. ImageNet是一个基于WordNet的大型图像数据库,在ImageNet中,将近1500万图片被关联到了W…
英文论文链接:http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf 翻译:卜居 转载请注明出处:http://blog.csdn.net/kkk584520/article/details/47450159 [0. 摘要] CNN已经广泛用于图像识别,因为它能模仿生物视觉神经的行为获得很高识别准确率.最近,基于深度学习算法的现代应用高速增长进一步改善了研究和实现.特别地,多种基于FPGA平台的深度CNN加速器被提出,具有高性能.可重配置…
神经网络和深度学习目前为处理图像识别的许多问题提供了最佳解决方案,而基于MTCNN(多任务级联卷积神经网络)的人脸检测算法也解决了传统算法对环境要求高.人脸要求高.检测耗时高的弊端. 基于MTCNN多任务级联卷积神经网络进行的人脸识别—— MTCNN主要包括三个部分,PNet,RNet,ONet 测试阶段大概过程 首先图像经过金字塔,生成多个尺度的图像,然后输入PNet. PNet由于尺寸很小,所以可以很快的选出候选区域,但是准确率不高,然后采用NMS算法,合并候选框,然后根据候选框提取图像.…