参考:https://pytorch.org/tutorials/advanced/neural_style_tutorial.html 具体的理论就不解释了,这里主要是解释代码: ⚠️使用的是python2.7 1.导入包和选择设备 下面是需要用来实现神经迁移的包列表: torch, torch.nn, numpy (使用pytorch实现神经网络必不可少的包) torch.optim (有效梯度下降) PIL, PIL.Image, matplotlib.pyplot (下载和显示图像) t…
参考:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html DATA LOADING AND PROCESSING TUTORIAL 在解决任何机器学习问题时,都需要花费大量的精力来准备数据.PyTorch提供了许多工具来简化数据加载,希望能使代码更具可读性.在本教程中,我们将看到如何加载和预处理/增强非平凡数据集中的数据. 为了运行下面的教程,请确保你已经下载了下面的数据包: scikit-image:为了图片的输入…
参考:https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 以下是两种主要的迁移学习场景 微调convnet : 与随机初始化不同,我们使用一个预训练的网络初始化网络,就像在imagenet 1000 dataset上训练的网络一样.其余的训练看起来和往常一样. 将ConvNet作为固定的特征提取器 : 在这里,我们将冻结所有网络的权重,除了最后的全连接层.最后一个完全连接的层被替换为一个具有随机权重的新层,…
参考:https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py TRAINING A CLASSIFIER 到这里,你已经知道怎么定义神经网络,计算损失和更新网络的权重 现在你应该考虑: What about data? 通常,当你必须要处理一些图片.文本.音频或视频数据时,你可以使用标准的python包去下载数据到一个numpy数组…
[pytorch]学习笔记-激励函数 学习自:莫烦python 什么是激励函数 一句话概括 Activation: 就是让神经网络可以描述非线性问题的步骤, 是神经网络变得更强大 1.激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题. 2.激励函数要考虑到线性所收到的约束条件,也就是掰弯线性函数 3.它其实就是另外一个非线性函数. 比如说relu, sigmoid, tanh. 将这些掰弯利器嵌套在原有的结果之上, 强行把原有的线性结果给扭曲了. 使得输出结果 y 也有了非线性的特征…
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预处理 我们将在PyTorch中编写模型并使用TorchText帮助我们完成所需的所有预处理.我们还将使用spaCy来协助数据的标记化. # 引入相关库 import torch import torch.nn as nn import torch.optim as optim from torcht…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的,对32*32的CIFAR10图片,网络结构做了微调:删除了最后一层最大池化,具体参见网络定义代码,这里采用VGG19,并加入了BN: ''' 创建VGG块 参数分别为输入通道数,输出通道数,卷积层个数,是否做最大池化 ''' def make_vgg_block(in_channel, out_ch…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFAR10,图片是32*32,尺寸远小于227*227,因此对网络结构和参数需做微调: 最后一个max-pool层删除 网络定义代码如下: class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self…