针对高偏差.高方差问题的解决方法: 1.解决高方差问题的方案:增大训练样本量.缩小特征量.增大lambda值 2.解决高偏差问题的方案:增大特征量.增加多项式特征(比如x1*x2,x1的平方等等).减少lambda值 隐藏层数的选择对于拟合效果的影响: 隐藏层数过少,神经网络简单,参数少,容易出现欠拟合: 隐藏层数过多,神经网络复杂,参数多,容易出现过拟合,同时计算量也庞大. 事实上,如果经常应用神经网络,特别是大型神经网络的话,会发现越大型的网络性能越好,如果发生了过拟合,可以使用正则化的方法…
假如我们在开发一个机器学习系统,想试着改进一个机器学习系统的性能,我们应该如何决定接下来应该选择哪条道路? 为了解释这一问题,以预测房价的学习例子.假如我们已经得到学习参数以后,要将我们的假设函数放到一组新的房屋样本上进行测试,这个时候我们会发现在预测房价时,产生了巨大的误差,现在我们的问题是要想改进这个算法接下来应该怎么办? 实际上我们可以想出很多种方法来改进算法的性能,其中一种办法是使用更多的训练样本.具体来讲,通过电话调查.上门调查,获取更多的不同的房屋出售数据.遗憾的是,好多人花费了大量…
(1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来我们要做的是高效地利用这些算法去解决实际问题,尽量不要把时间浪费在没有多大意义的尝试上,Advice for applying machine learning & Machinelearning system design 这两课介绍的就是在设计机器学习系统的时候,我们该怎么做? 假设我们实现了一…
当我们运行一个学习算法时,如果这个算法的表现不理想,那么有两种原因导致:要么偏差比较大.要么方差比较大.换句话说,要么是欠拟合.要么是过拟合.那么这两种情况,哪个和偏差有关.哪个和方差有关,或者是不是和两个都有关,搞清楚这点很重要.能判断出现的情况是这两种中的哪一种,是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径. 下面深入地探讨一下有关偏差和方差的问题,并且能弄清楚怎样评价一个学习算法.能够判断一个算法是偏差还是方差有问题.因为这个问题对于弄清如何改进学习算法的效果非常重要. 如…
1.斯坦福大学公开课机器学习 (吴恩达 Andrew Ng) http://open.163.com/special/opencourse/machinelearning.html 笔记 http://cs229.stanford.edu/syllabus.html http://www.cnblogs.com/jerrylead/default.html?page=3 http://www.cnblogs.com/madrabbit/ https://blog.csdn.net/xiahouz…
2015-07-06 第一讲   课务.iOS概述 -------------------------------------------------- 开始学习斯坦福大学公开课:iOS 7应用开发留下笔记…
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多特征:4.尝试添加多项式特征:5.减小 λ:6.增大 λ 为了避免一个方案一个方案的尝试,可以通过评估机器学习算法的性能,来进行调试. 机器学习诊断法 Machine learning diagnostic 的定义: 10.2 评估一个假设 想要评估一个算法是否过拟合 (一)首先,划分测试集和训练集…
In Week 6, you will be learning about systematically improving your learning algorithm. The videos for this week will teach you how to tell when a learning algorithm is doing poorly, and describe the 'best practices' for how to 'debug' your learning…
https://jmetzen.github.io/2015-01-29/ml_advice.html Advice for applying Machine Learning This post is based on a tutorial given in a machine learning course at University of Bremen. It summarizes some recommendations on how to get started with machin…
误差分析可以更系统地做出决定.如果你准备研究机器学习的东西或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统.拥有多么复杂的变量,而是构建一个简单的算法.这样你可以很快地实现它.研究机器学习的问题时,会花一天的时间试图很快的把结果搞出来.即便效果不好,运行得不完美,通过交叉验证来检验数据,一旦做完,就可以画出学习曲线.通过画出学习曲线以及检验误差来找出算法是否有高偏差和高方差的问题,或者别的问题.在这样分析之后,再来决定用更多的数据训练,或者加入更多的特征变量.这么做的原因是刚接…