[AH2017/HNOI2017]影魔】的更多相关文章

嘟嘟嘟 这题真的挺神的,我是真没想出来. 洛谷的第一篇题解说的非常妙,实在是佩服. 就是我们首先预处理出对于第\(i\)个数,在\(i\)左边比第一个比\(i\)大的数\(l_i\),在\(i\)右边第一个比\(i\)大的数\(r_i\). 这个可以用单调栈扫两边分别求出来. 然后我们考虑位于\([l_i, r_i]\)中的所有数产生的贡献: 1.\(l_i\)和\(r_i\)单独产生\(p1\)的贡献. 2.位于\([l_i + 1, i - 1]\)的数都和\(r_i\)产生\(p2\)的贡…
传送门 我太弱了,只会乱搞,正解是不可能正解的,这辈子不可能写正解的,太蠢了又想不出什么东西,就是乱搞这种东西,才能维持得了做题这样子 考虑将询问离线,按右端点排序,并且预处理出每个位置往前面第一个大于这个数的位置,记为\(fa_i\) 如果加入一个右端点\(i\),那么可以加上贡献的左端点有以下三类 在区间\([fa_i,i)\)中,从\(i-1\)开始一直跳\(fa\),能到达的位置加上p1 在区间\([fa_i,i)\)中,从\(i-1\)开始一直跳\(fa\),不能到达的位置加上p2 在…
题意 题目链接 Sol 题解好神仙啊qwq. 一般看到这种考虑最大值的贡献的题目不难想到单调数据结构 对于本题而言,我们可以预处理出每个位置左边第一个比他大的位置\(l_i\)以及右边第一个比他大的位置\(r_i\) 那么\((l_i, r_i)\)会产生\(p1\)的贡献 \([l_i + 1, i - 1]\)和\(r_i\)会产生\(p2\)的贡献 \([i + 1, r_i - 1]\)和\(l_i\)会产生\(p2\)的贡献 这样我们直接上区间加线段树就能统计到每个点的贡献了. 然后统…
设\(l[i]\)为i左边第一个比i大的数的下标.\(r[i]\)为i右边第一个比i大的数的下标. 我们把\(p1,p2\)分开考虑. 当产生贡献为\(p1\)时\(i\)和\(j\)一定满足,分别为\(l[x],r[x]\)枚举每一个值为\(i\),\(j\)之间最大值可证. 党产生贡献为\(p2\)时\(i\)和\(j\)满足分别为\(l[x],[x+1,r[x]-1]\)或\([l[x]+1,x-1],r[x]\),此时\(a[x]\)为\(i\),\(j\)之间最大值,\(i\),\(j…
#include<bits/stdc++.h> #define maxn 200010 using namespace std; int a[maxn],st[maxn][2],top,L[maxn],R[maxn],root[2][maxn]; struct node{int x,y;}A[maxn]; struct Node{int x,yl,yr;}B[maxn<<1]; long long num; bool cmp1(node p,node q){return p.x&l…
题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l,r]\) 产生 \(p_2\) 的贡献当且仅当 \(a_l\) 为区间 \([l,r]\) 的最大值且 \(a_r\) 不是区间 \([l,r]\) 的次大值,或者 \(a_r\) 为区间 \([l,r]\) 的最大值且 \(a_l\) 不是区间 \([l,r]\) 的次大值. 我们考虑转化贡献体…
4826: [Hnoi2017]影魔 题意:一个排列,点对\((i,j)\),\(p=max(i+1,j-1)\),若\(p<a_i,a_j\)贡献p1,若\(p\)在\(a_1,a_2\)之间贡献p2. 多组询问一个区间的贡献和. 感觉和去年的题挺像的...然后\(O(n\sqrt{n}logn)\)莫队被卡成暴力...那个log还是主席树log... 并且调试时间比正解还长,不能更弱了 一个点对只有唯一的最大值\(p\) 可以按照\(p\)来分类统计 单调栈预处理\(l_i, r_i\)第一…
题目链接:[AH2017/HNOI2017]礼物 题意: 两个环x, y 长度都为n k可取 0 ~ n - 1      c可取任意值 求 ∑ ( x[i] - y[(i + k) % n + 1] + c) ^ 2 的最小值 ans[k] = ∑ ( x[i], y[(i + k) % n + 1] ) ^ 2 拆项 发现ans[k] = ∑ x[i] ^ 2 + ∑ y[i] ^ 2  + n * c ^ 2 + 2 * ∑ x[i] * c - 2 * ∑ y[i] * c - 2 *…
4826: [Hnoi2017]影魔 https://lydsy.com/JudgeOnline/problem.php?id=4826 分析: 莫队+单调栈+st表. 考虑如何O(1)加入一个点,删除一个点,类似bzoj4540.然后就可以莫队了.复杂度$O(n\sqrt n)$ 代码: #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #include<…
[LG3722][HNOI2017]影魔 题面 洛谷 题解 先使用单调栈求出\(i\)左边第一个比\(i\)大的位置\(lp_i\),和右边第一个比\(i\)大的位置\(rp_i\). 考虑\(i\)对答案的贡献,当且仅当\(i\)作为区间\([x+1,y-1]\)的最大值时,\(i\)才对点对\((x,y)\)有贡献. 根据题意,第一种情况\(i\)产生贡献的点对是\((lp_i,rp_i)\), 第二种情况\(i\)产生贡献的点对是\((l[i],i+1\) to \(r[i]-1)\)和\…