UVA11059-Maximum Product(动态规划)】的更多相关文章

1.题目名称 Maximum Product 2.题目地址 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2000 3.题目内容 Given a sequence of integers S = {S1, S2, . . . , Sn}, you should determine what is the value of the maxi…
Maximum Subarray 一.题目描写叙述 就是求一个数组的最大子序列 二.思路及代码 首先我们想到暴力破解 public class Solution { public int maxSubArray(int[] nums) { int sum = Integer.MIN_VALUE; for(int i=0; i<nums.length; i++) for(int j=i+1; j<nums.length; j++) sum = Math.min(nums[i]+nums[j],…
Add Date 2014-09-23 Maximum Product Subarray Find the contiguous subarray within an array (containing at least one number) which has the largest product. For example, given the array [2,3,-2,4],the contiguous subarray [2,3] has the largest product = …
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: int maxSubArray(vector<int>& nums) { vector<int> dp(nums.size()); int res = INT_MIN; ;i < nums.size();i++){ dp[i] = nums[i]; &&…
Maximum Product Subarray Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Ex…
Question 152. Maximum Product Subarray Solution 题目大意:求数列中连续子序列的最大连乘积 思路:动态规划实现,现在动态规划理解的还不透,照着公式往上套的,这个问题要注意正负,需要维护两个结果 Java实现: public int maxProduct(int[] nums) { if (nums.length == 1) return nums[0]; // 定义问题:状态及对状态的定义 // 设max[i]表示数列中第i项结尾的连续子序列的最大连…
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB1QAAAMcCAIAAABo0QCJAAAgAElEQVR4nOydW7msuhKF2wIasIAHJK…
Find the contiguous subarray within an array (containing at least one number) which has the largest product. For example, given the array [2,3,-2,4],the contiguous subarray [2,3] has the largest product = 6. 这个求最大子数组乘积问题是由最大子数组之和问题演变而来,但是却比求最大子数组之和要复…
题目链接:Maximum Product Subarray solutions同步在github 题目很简单,给一个数组,求一个连续的子数组,使得数组元素之积最大.这是求连续最大子序列和的加强版,我们可以先看看求连续最大子序列和的题目maximum-subarray,这题不难,我们举个例子. 假设数组[1, 2, -4, 5, -1, 10],前两个相加后得到3,更新最大值(为3),然后再加上-4后,和变成-1了,这时我们发现如果-1去加上5,不如舍弃前面相加的sum,5单独重新开始继续往后相加…
注意long long  long long  longlong !!!!!!   还有 printf的时候 明明longlong型的答案 用了%d  WA了也看不出,这个细节要注意!!! #include <cstdio> ]; int main() { ;long long ans,sum; while(~scanf("%d",&n)) { ;i<n;i++) scanf("%d",&a[i]); ans=; ;i<n;i…