ML.NET 示例:聚类之客户细分】的更多相关文章

写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 客户细分-聚类示例 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版 控制台应用程序 .csv 文件 客户细分 聚类 K-means++ 问题 您想要识…
理解问题 客户细分需要解决的问题是按照客户之间的相似特征区分不同客户群体.这个问题的先决条件中没有可供使用的客户分类列表,只有客户的人物画像. 数据集 已有的数据是公司的历史商业活动记录以及客户的购买记录. offer.csv: Offer #,Campaign,Varietal,Minimum Qty (kg),Discount (%),Origin,Past Peak 1,January,Malbec,72,56,France,FALSE 2,January,Pinot Noir,72,17…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn ML.NET 示例 ML.NET 是一个跨平台的开源机器学习框架,使.NET开发人员使用机器学习变得很容易.在这个GitHub 存储库中,我们提供了示例,这些示例将帮助您开始使用ML.NET,以及如何将ML.NET加入到现有…
ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn 英文原版请访问:https://github.com/dotnet/machinelearning-samples ML.NET 示例 ML.NET 是一个跨平台的开源机器学习框架,使.NET开发人员使用机器学习变得很容易. 在这个GitHub 存储库中,我们提供了示例,这些示例将帮助您开始使用ML.NET,以及如何将ML.NET加入到现有的和新的.N…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn eShopDashboardML - 销售预测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 ASP.NET Core Web应用程序和控制台应用…
正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求. 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). 我早期两篇博文已详述了RFM思想和IBM Modeler操作…
RFM模型是网点衡量当前用户价值和客户潜在价值的重要工具和手段.RFM是Rencency(最近一次消费),Frequency(消费频率).Monetary(消费金额) 消费指的是客户在店铺消费最近一次和上一次的时间间隔,理论上R值越小的客户是价值越高的客户,即对店铺的回购几次最有可能产生回应.目前网购便利,顾客已经有了更多的购买选择和更低的购买成本,去除地域的限制因素,客户非常容易流失,因此CRM操盘手想要提高回购率和留存率,需要时刻警惕R值. 消费频率是客户在固定时间内的购买次数(一般是1年)…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn  聚类鸢尾花数据 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版 控制台应用程序 .txt 文件 聚类鸢尾花 聚类 K-means++ 在这个介绍性…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn Movie Recommender ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 需要升级到v0.8 终端应用程序 .csv 电影推荐 推荐 场感知分解机…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 产品推荐 - 矩阵分解问题示例 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.8 动态 API 最新版本 控制台应用程序 .txt 文件 推荐 矩阵分解 MatrixFact…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 电影推荐 - 矩阵分解示例 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 控制台应用程序 .csv 文件 推荐 矩阵分解 MatrixFactor…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 用户评论的情绪分析 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API README.md 已更新 控制台应用程序 .tsv 文件 情绪分析 二元分类 线性分类 在…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 图像分类 - 评分示例 问题 图像分类是许多业务场景中的常见情况. 对于这些情况,您可以使用预先训练的模型或训练自己的模型来对特定于自定义域的图像进行分类. 数据集 有两个数据源:tsv文件和图像文件.tsv 文件 包含2列…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 出租车费预测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 控制台应用程序 .csv 文件 价格预测 回归 Sdca 回归 在这个介绍性示例中,您…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 鸢尾花分类 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新版本 控制台应用程序 .txt 文件 鸢尾花分类 多类分类 Sdca Multi-class…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn GitHub Labeler ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态 API 最新的 控制台应用程序 .csv 文件 和 GitHub 问题 问题分类 多类分…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 基于二元分类和PCA的信用卡欺诈检测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API 更新至0.7 两个控制台应用程序 .csv 文件 欺诈检测 二元分类 Fa…
写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/feiyun0112/machinelearning-samples.zh-cn 垃圾短信检测 ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 v0.7 动态API 可能需要更新项目结构以匹配模板 控制台应用程序 .tsv 文件 垃圾信息检测 二元分类 SDCA(…
ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 Microsoft.ML 1.5.0 动态API 最新 控制台应用程序和Web应用程序 图片文件 图像分类 基于迁移学习的TensorFlow模型再训练进行图像分类 DNN架构:ResNet.InceptionV3.MobileNet等 问题 图像分类是深度学习学科中的一个常见问题.此示例演示如何通过基于迁移学习方法训练模型来创建您自己的自定义图像分类器,该方法基本上是重新训练预先训练的模型(如Incept…
RFM模型 在众多的客户价值分析模型中,RFM模型是被广泛应用的,尤其在零售和企业服务领域堪称经典的分类手段.它的核心定义从基本的交易数据中来,借助恰当的聚类算法,反映出对客户较为直观的分类指示,对于没有数据分析和机器学习技术支撑的初创企业,它是简单易上手的客户分析途径之一. RFM模型主要有三项指标: Recency:最近消费时间间隔 Frequency:消费频率 Monetary:消费金额 我们为客户在这三项指标上进行打分,那么总共会有27种组合的可能,使用K-Means算法,能够缩减到指定…
从2018年12月02日决定开始做ML.NET 示例中文版https://github.com/feiyun0112/machinelearning-samples.zh-cn,然后以每天一篇的速度进行翻译,总共耗时15天,将现有的官方实例全部翻译成了中文,并提交了添加中文链接PR,现已合并到https://github.com/dotnet/machinelearning-samples主线中. 起因 前段时间参加了"微软MVP 三剑客"项目,该项目的目的是共同为Microsoft…
ML.NET 示例:目录 ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn英文原版请访问:https://github.com/dotnet/machinelearning-samples ML.NET 示例 ML.NET 是一个跨平台的开源机器学习框架,使.NET开发人员使用机器学习变得很容易. 在这个GitHub 存储库中,我们提供了示例,这些示例将帮助您开始使用ML.NET,以及如何将ML.NE…
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基础:包括Spark的运行库.矩阵库和向量库: 算法库:包含广义线性模型.推荐系统.聚类.决策树和评估的算法: 实用程序:包括测试数据的生成.外部数据的读入等功能. MLlib的底层基础解析 底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPAC…
原文地址:https://devblogs.microsoft.com/dotnet/announcing-ml-net-1-0/ 我们很高兴地宣布今天发布ML.NET 1.0.  ML.NET是一个免费的,跨平台的开源机器学习框架,旨在将机器学习(ML)的强大功能引入.NET应用程序. https://github.com/dotnet/machinelearning 入门@ http://dot.net/ml ML.NET允许您使用C#或F#训练,构建和发布自定义机器学习模型,用于情景分析,…
准确的客户分类的结果是企业优化营销资源的重要依据,本文利用了航空公司的部分数据,利用Kmeans聚类方法,对航空公司的客户进行了分类,来识别出不同的客户群体,从来发现有用的客户,从而对不同价值的客户类别提供个性化服务,指定相应的营销策略. 一.分析方法和过程 1.数据抽取——>2.数据探索与预处理——>3.建模与应用 传统的识别客户价值应用最广泛的模型主要通过3个指标(最近消费时间间隔(Recency).消费频率(Frequency)和消费金额(Monetary))来进行客户细分,识别出价值高…
来源:, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto' ) 1 2 3 4 5 6 7 8 9 10 11 12 参数的意义: n_clusters:簇的个数,即你想聚成几类 init: 初始簇中心的获取方法 n_init: 获取初始簇中…
ML.NET是Microsoft最近发布的用于机器学习的开源,跨平台,代码优先的框架.尽管对我们来说是一个新的框架,但该框架的根源是Microsoft Research,并且在过去十年中已被许多内部团队使用,包括那些您几乎肯定听说过的产品的开发人员-Microsoft Windows,Office和Bing,仅举几例. ML.NET使.NET开发人员可以轻松地将机器学习集成到其应用程序中,无论是控制台,桌面还是Web.它涵盖了机器学习活动的整个生命周期,从模型的训练和评估到使用和部署.支持许多典…
今天,我们很高兴宣布发布 ML.NET 1.0.ML.NET 是一个免费的.跨平台的开源机器学习框架,旨在将机器学习(ML)的强大功能引入.NET 应用程序. ML.NET GitHub:https://github.com/dotnet/machinelearning 入门 @ http://dot.net/ml ML.NET 允许你使用 C#或 F#训练.构建和发布自定义机器学习模型,用于情景分析.问题分类.预测.推荐等场景.你可以在我们的ML.NET 样品库中查看这些常见的场景和任务. M…
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Kmeans聚类 1)基本概念 聚类:无监督分类,对无标签案例进行分类. 半监督学习:从无标签的数据入手,是哦那个聚类来创建分类标签,然后用一个有监督的学习算法(如决策树)来寻找这些类中最重要的预测指标. kmeans聚类算法特点: kmeans算法涉及将n个案例中的每一个案例分配到指定k个类中的一个(…
CRM最初是由Gartner Group提出的. CRM定义:"客户关系管理(CRM),是代表增进赢利.收入和客户满意度而设计的,企业范围的商业战略." 我们可以看出,Gartner强调的是 CRM是一种商业战略,而不是一套系统 CRM涉及的范围是整个企业,而不是一个部门 CRM的战略目标是增进赢利.销售收入,提升客户满意度 CRM实现的是基于客户细分的一对一营销,以客户为中心,以信息技术(CRM系统)为手段,是连接外部客户与内部员工的纽带,集中管理客户数据与员工工作轨迹. 7P: 客…