完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊,伪基站,金融欺诈等领域. 在之前已经学习了异常检测算法One Class SVM和 isolation  Forest算法,博文如下: Python机器学习笔记:异常点检测算法--One…
大家好,我是人见人爱,花见花开的小花.哈哈~~! 在统计和数据挖掘中,亲和传播(AP)是基于数据点之间"消息传递"概念的聚类算法.与诸如k-means或k-medoids的聚类算法不同,亲和传播不需要在运行算法之前确定或估计聚类的数量. 类似于k-medoids,亲和力传播算法发现"样本",输入集合的成员,输出聚类结果. 一 算法描述 2.1基本介绍 我们让(x1,-xn)作为一系列的数据点,然后用矩阵S代表各个数据点之间的相似度,一般相似度的判断有欧氏距离,马氏距…
本文结构: 什么是集成学习? 为什么集成的效果就会好于单个学习器? 如何生成个体学习器? 什么是 Boosting? Adaboost 算法? 什么是集成学习 集成学习就是将多个弱的学习器结合起来组成一个强的学习器. 这就涉及到,先产生一组‘个体学习器’,再用一个策略将它们结合起来. 个体学习器可以选择:决策树,神经网络.集成时可以所有个体学习器属于同一类算法:全是决策树,或全是神经网络:也可以来自不同的算法.结合策略:例如分类问题,可以用投票法,少数服从多数. 之所以用这种集成的思想,是因为单…
9. Clustering Content 9. Clustering 9.1 Supervised Learning and Unsupervised Learning 9.2 K-means algorithm(代码地址:https://github.com/llhthinker/MachineLearningLab/tree/master/K-Means) 9.3 Optimization objective 9.4 Random Initialization 9.5 Choosing t…
在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这些特征训练出了每一个用户的参数.相反地,如果我们拥有用户的参数,我们可以学习得出电影的特征. 但是如果我们既没有用户的参数,也没有电影的特征,这两种方法都不可行了.协同过滤算法可以同时学习这两者. 我们的优化目标便改为同时针对…
对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征: 异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:…
K-近邻算法 (一)定义:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别. (二)相似的样本,特征之间的值应该是相近的,使用k-近邻算法需要做标准化处理.否则预测出来的效果很差. (三)算法的优缺点: 优点:比较简单,易于实现,无需估计参数,无需训练. 缺点:计算量大,内存开销大,必须指定k值,k值若选取不当则分类精度不能保证. (四)适用场景:适用于小数据场景,几千~几万个样本. 实例: from sklearn.model_selection im…
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析(PCA)是最常见的降维算法 当主成分数量K=2时,我们的目的是找到一个低维的投影平面,当把所有的数据都投影到该低维平面上时,希望所有样本 平均投影误差 能尽可能地小. 投影平面 是一个由两个经过原点的向量规划而成的平面,而 投影误差 是 从特征向量向该投影平面作垂线的长度. 当主成分数量K=1时,我…
本文介绍密度估计的 EM(Expectation-Maximization,期望最大). 假设有 {x(1),...,x(m)},因为是无监督学习算法,所以没有 y(i). 我们通过指定联合分布 p(x(i),z(i))=p(x(i)|z(i))p(z(i)) 来对数据建模.这里 z(i)~Multinomial(Φ),其中 Φj≥0,Φ1+Φ2+...+Φk=1,参数 Φj 给定 p(z(i)=j),x(i)|z(i)=j~N(μj,∑j).k 表示 z(i) 能取的值的个数,所以,通过从 {…
K-近邻算法 一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就是对特征空间的的划分.模型有三个基本要素:距离度量.K值的选择和分类决策规则的决定. 距离度量 距离定义为: \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^p \right) ^{\frac{1}{p}}\] 一般…