【学习】Hall’s Marriage Theorem】的更多相关文章

其实是在做题时遇到这个定理的. 这个定理的图论意义是: 对于一个二分图\(G=\{X+Y,E\}\),它满足: \(\forall W \subseteq X, \, |W| \leq |N_G(W)|\) \(\iff\)\(X\)中的每个结点都有匹配. 其中\(N_G(W)\)为图\(G\)中所有与\(W\)相连的结点的集合. 必要性显然. 对于充分性,不会--以后再补充. 由这个定理,我们能得到一个推论: 二分图\(G\)的最大匹配\(M\)等于\(|X| - \max (|W| - |N…
[CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果不合法,假设我们存在一个极小的集合满足连到右侧的点数小于集合大小.因为是极小的,所以删去一个点之后就可以匹配,那么意为着某个点连出去的点和其他所有点有交,既然有交,那么一定这一段区间都可以加入进来形成一个不合法的集合.所以我们可以把存在一个点集不合法变成存在一段连续区间不合法. 假设每个点连向另外一…
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Academia.edu) Summary Standard Error The standard error of a random variable $X$ is defined by $$SE(X)=\sqrt{E((X-E(X))^2)}$$ $SE$ measures the rough size…
基本定义 \(Hall\) 定理是二分图匹配的相关定理 用于判断二分图是否存在完美匹配 存在完美匹配的二分图即满足最大匹配数为 \(min(|X|,|Y|)\) 的二分图,也就是至少有一边的点全部被匹配到了 定理 设 \(M(U)\) 为与 \(U\) 中的点相连的点集,一个二分图 \(U,V(|U|<=|V|)\) 存在完美匹配,满足对于任意点集 \(x∈U\) 都有 \(|M(X)|>=|X|\) 必要性证明 连出去的边数都不足点数,那么显然不能构成完美匹配 充分性证明 假如存在一个满足…
Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n - 1阶主子式的值. 关于定理的相关证明 可以看这篇文章, 讲得非常详细, 耐心看就能看懂: 关于求行列式, 可以用高斯消元. 如果是模域下求行列式, 可以用欧几里得算法. 具体实现看这篇文章 模域下求行列式 模板题:SPOJ DETER3 代码: #include <cstdio> #inclu…
传送门 题意: 给出一个长度为\(L\)的环,标号从\(0\)到\(L-1\). 之后给出\(n\)个新郎,\(n\)个新娘离起点的距离. 现在新郎.新娘要一一配对,但显然每一对新人的产生都会走一定的距离\(d_i\),求所有\(d_i\)中最大值最小是多少. 思路: 显然最后的答案具有单调性,故可以二分答案之后来判定. 二分最大时间\(x\),那么只添加距离不超过\(x\)的边,做个最大匹配即可. 但因为\(n\)达到\(2e5\),显然匈牙利算法不可行. 考虑\(hall\)定理:若一个二分…
定义度数矩阵\(D(G)\): 定义邻接矩阵\(C(G)\): 定义\(Laplace\)矩阵\(A\) \( A(G) = D(G) - C(G) \) 记图\(G\)的所有生成树权值和为\(t(G)\) 一颗树形结构的权值为该树所有边权的积 无向图情况: 如果存在一条边\((x,y,w)\) 则\(D_{x,x},D_{y,y} += w\) 则\(C_{x,y},C_{y,x} += w\) 则\(A\)删除根节点对应的行和列,剩下的\(n - 1\)阶主子式则是权值之和 有向图情况: 如…
这是六个人的故事,从不服输而又有强烈控制欲的monica,未经世事的千金大小姐rachel,正直又专情的ross,幽默风趣的chandle,古怪迷人的phoebe,花心天真的joey——六个好友之间的情路坎坷,事业成败和生活中的喜怒哀乐,无时无刻不牵动着彼此的心,而正是正平凡的点点滴滴,却成为最令人感动与留恋的东西. 人物:1.瑞秋•格林(RACHEL GREENE)由珍妮佛•安妮斯顿(Jennifer Aniston)扮演 瑞秋是莫妮卡的高中同学,在与牙医未婚夫的婚礼上脱逃至莫妮卡处. 2.罗…
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的增强学习). 那么如何求解最优策略呢?基本的解法有三种: 动态规划法(dynamic programming methods) 蒙特卡罗方法(Monte Carlo methods) 时间差分法(temporal difference). 动态规划法是其中最基本的算法,也是理解后续算法的基础,因此本…
Python是一种面向对象的解释性的计算机程序设计语言,也是一种功能强大且完善的通用型语言,已经有十多年的发展历史,成熟且稳定.Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用. Python语言有非常简捷.清晰的语法特点,适合完成各种高层任务,可以在所有操作系统中运行.目前,基于这种语言的相关技术正在飞速的发展,用户数量急剧扩大,相关的资源非常多. Python的创始人为Guido van Rossum.1989年圣诞节期间,在阿姆斯特丹,Guido为了打发圣诞节的无趣…