[Bayes] Latent Gaussian Process Models】的更多相关文章

比较难理解,通过做题来入门. 目的:简单的了解下相关概念. 基础 热身 目的:找x到y的映射关系. 假设:Q latent functions {fi} fj 作为先验,跟x没什么直接关系,x只是作为承载超参数的载体.共有Q个,也就是有Q套超参数. 对于公式(4),x --> f --> (noise) --> y,大概就是这么个关系. 因为noise,当然y是iid. 由公式(3)可见,f也是iid. 一般而言,Q等于多分类的类别数量,P = 1即可(无需one-hot). 开始 没看…
科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能队伍. 9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process 8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders 7. [Bayesian] “我是bayesian我怕谁”系列 - Bo…
原理请观良心视频:机器学习课程 Expectation Maximisation Expectation-maximization is a well-founded statistical algorithm to get around this problem by an iterative process. First one assumes random components (randomly centered on data points, learned from k-means,…
不错的草稿.但进一步处理是必然的,也是难点所在. Extended: 固定摄像头,采用Gaussian mixture models对背景建模. OpenCV 中实现了两个版本的高斯混合背景/前景分割方法(Gaussian Mixture-based Background/Foreground Segmentation Algorithm),调用接口很明朗,效果也很好. 参见:[Scikit-learn] 2.1 Gaussian mixture models & EM [1] 有趣的应用 之…
Definition 1. A Gaussian Process is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions. 高斯分布(Gaussian Distribution) 是由方差向量(一维的时候是一个常量)和一个协方差矩阵(一维是方差)确定. 而高斯过程是一个随机过程的集合,它由一个均值函数m(x)和方差函数k(x,x')…
Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 Clustering (3): Gaussian Mixture Model « Free Mind http://blog.pluskid.org/?p=39 2. Regularized Gaussian Covariance Estimation http://freemind.pluski…
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 高斯过程(gaussian process) 可用于回归和分类器 高斯过程主要应用于各领域的建模和预报,在时间序列分析中,高斯过程被用于时间序列的多…
维纳过程又叫布朗运动过程(Brownian motion): 1. 维纳过程 维纳过程 Wt 由如下性质所描述: W0=1, a.s.(a.s.,almost surely)…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regression详解[涉及到假设检验] 引申问题,如何拟合sin数据呢? 如果不引入sin这样周期函数,可以使用:scikit learn 高斯过程回归[有官方例子] 参考:[Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process 牛津讲义:An Introducti…