EM 算法 实例】的更多相关文章

#coding:utf-8 import math import copy import numpy as np import matplotlib.pyplot as plt isdebug = True #指定k个高斯分布參数,这里指定k=2. #注意2个高斯分布具有同样方差Sigma.均值分别为Mu1,Mu2. #共1000个数据 #生成训练样本.输入6,40,20,2 #两类样本方差为6. #一类均值为20.一类为40 #随机生成1000个数 def ini_data(Sigma,Mu1…
最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開始我们的讨论.如果如今有100个人的身高数据,并且这100条数据是随机抽取的. 一个常识性的看法是.男性身高满足一定的分布(比如正态分布),女性身高也满足一定的分布.但这两个分布的參数不同. 我们如今不仅不知道男女身高分布的參数,甚至不知道这100条数据哪些是来自男性.哪些是来自女性.这正符合聚类问…
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmeans聚类(输入样本数据,输出样本数据的标注).实际上,高斯混和模型GMM和kmeans都是EM算法的应用. 在opencv3.0中,EM算法的函数是trainEM,函数原型为: bool trainEM(InputArray samples, OutputArray logLikelihoods=n…
原创博客,转载请注明出处 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5053798.html EM框架是一种求解最大似然概率估计的方法.往往用在存在隐藏变量的问题上.我这里特意用"框架"来称呼它,是因为EM算法不像一些常见的机器学习算法例如logistic regression, decision tree,只要把数据的输入输出格式固定了,直接调用工具包就可以使用.可以概括为一个两步骤的框架: E-step:估计隐藏变量的概…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariable).最大期望经常用在机器学习和计算机视觉的数据聚类(DataClustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中…
''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- the Parameters set is: alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0 ---------------------------- the Parameters predict is: al…
前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture unigram 语言模型和混合高斯模型GMM的参数,最后总结EM算法的一般形式及运用关键点.对于改进PLSA,引入hyperparameter的LDA模型及其Gibbs Sampling参数估计方法放在本系列后面的文章LDA及Gibbs Samping介绍. 1 LSA and SVD LSA(隐性…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
EM算法即期望最大化(Expection Maximization)算法,是一种最优化算法,在机器学习领域用来求解含有隐变量的模型的最大似然问题.最大似然是一种求解模型参数的方法,顾名思义,在给定一组数据时,将似然表示为参数的函数,然后对此似然函数最大化即可求出参数,此参数对应原问题的最大似然解.对于简单的问题,我们通过将似然函数对参数求导并令导数等于零即可求出参数的解析解或隐式解.然而,有一类模型,他们的结构中包含隐变量(如混合高斯模型.混合伯努利模型.隐马尔科夫模型等),无法通过对似然函数直…