【UOJ 34】 #34. 多项式乘法 (FFT)】的更多相关文章

------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法     一般应用最广泛的表示方式     用A(x)表示一个x-1次多项式,a[i]为$ x^i$的系数,则A(x)=$ \sum_0^{n-1}$ a[i] * $ x^i$ 仅利用这种方式求多项式乘法复杂度为O($ n^2$),不够优秀2.点值表示法     将n个互不相同的值$ x_0$...$…
新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_n=\sum\limits_{i=0}^n A_iB_{n-i} \] 基本思路为先将系数表达 -> 点值表达 \(O(nlogn)\) 随后点值 \(O(n)\) 进行乘法运算 最后将点值表达 -> 系数表达 \(O(nlogn)\) 代码 #include<cstdio> #inc…
目录 @0 - 参考资料@ @1 - 一些概念@ @2 - 傅里叶正变换@ @3 - 傅里叶逆变换@ @4 - 迭代实现 FFT@ @5 - 参考代码实现@ @6 - 快速数论变换 NTT@ @7 - 任意模数 NTT@ @三模数 NTT@ @拆系数 fft (mtt)@ @8 - 例题与应用@ @分治 FFT@ @多维卷积@ @循环卷积@ @多项式求逆,除法与取模@ @多点求值与快速插值@ @多项式开方,对数,指数,三角与幂函数@ @0 - 参考资料@ Miskcoo's Space 的讲解…
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的文字好像有点多呀qwq啊话痨是真的qwq) [正题] 一些预备知识(有了解的就可以直接跳啦,mainly from 算导) fft的话,用来解决与多项式乘法有关的问题 关于多项式 一个以x为变量的多项式定义在一个代数域$F$上,将函数$A(x)$表示为形式和: $A(x) = \sum\limits…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
[题意] 给你两个多项式,请输出乘起来后的多项式. 先打一个递归版本的模板... #include<cstdio> #include<iostream> #include<cmath> #include<memory.h> #define N 400010 using namespace std; const double pi=acos(-1); struct P { double x,y; P() {x=y=0;} P(double x,double y…
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项系数. 第三行 m+1m+1 个整数,表示第二个多项式的 00 到 mm 次项系数. 输出格式 一行 n+m+1n+m+1 个整数,表示乘起来后的多项式的 00 到 n+mn+m 次项系数. 样例一 input 1 2 1 2 1 2 1 output 1 4 5 2 explanation (1+…
快速傅里叶变换模板题 算法理解请看<算法导论>第30章<多项式与快速傅里叶变换>,至于证明插值唯一性什么的看不懂也没关系啦-只要明白这个过程是怎么算的就ok. 递归版:(4252ms  23468kb) //UOJ 34 递归版 #include<cmath> #include<vector> #include<cstdio> #include<cstring> #include<cstdlib> #include<…
http://uoj.ac/problem/34 看了好长时间的FFT和NTT啊qwq在原根那块磨蹭了好久_(:з」∠)_ 首先设答案多项式的长度拓展到2的幂次后为n,我们只要求出一个g(不是原根)满足\(i\in \{1\dots n\},g^i\)互不相同,且\(g^n=1\). 把这个g当做"FFT里面的主n次单位根"的类似物. 而且\(g^{\frac n2}=-1\),因为\(g^{\frac n2}\)与\(g^n\)不相同且\((g^{\frac n2})^2=g^n=1…
题意:给定两个 \(n\) 元环,环上每个点有权值,分别为 \(x_i, y_i\).定义两个环的差值为 \[\sum_{i=0}^{n-1}{(x_i-y_i)^2}\] 可以旋转其中的一个环,或者将其中一个环的每种权值加上一个数.求最小化的差值. Solution: 加数只需要加在一个上面即可(假设可以为负),那么差值可以写成 \[\sum_{i=0}^{n-1}{(x_i-y_{i+k}+c)^2}\] 我们可以将差值定义为旋转位数\(k\)与加数\(c\)的函数,即 \(f(k,c)\)…