Libsvm和Liblinear的使用经验谈】的更多相关文章

原文:http://blog.sina.com.cn/s/blog_5b29caf7010127vh.html Libsvm和Liblinear都是国立台湾大学的Chih-Jen Lin博士开发的,Libsvm主要是用来进行非线性svm 分类器的生成,提出有一段时间了,而Liblinear则是去年才创建的,主要是应对large-scale的data classification,因为linear分类器的训练比非线性分类器的训练计算复杂度要低很多,时间也少很多,而且在large scale dat…
对于多分类问题以及核函数的选取,以下经验规则可以借鉴: 如果如果特征数远远大于样本数的情况下,使用线性核就可以了. 如果特征数和样本数都很大,例如文档分类,一般使用线性核, LIBLINEAR比LIBSVM速度要快很多. 如果特征数远小于样本数,这种情况一般使用RBF.但是如果一定要用线性核,则选择LIBLINEAR较好,而且使用-s 2选项 原文: http://orangeprince.info/2014/11/23/libsvm-liblinear-2/ http://orangeprin…
转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.com http://blog.csdn.net/zouxy09 本文主要是翻译liblinear-1.93版本的README文件.里面介绍了liblinear的详细使用方法.更多信息请参考: http://www.csie.ntu.edu.tw/~cjlin/liblinear/ 在这里我用到的是L…
LibLinear(SVM包)的MATLAB安装 1 LIBSVM介绍 LIBSVM是众所周知的支持向量机分类工具包(一些支持向量机(SVM)的开源代码库的链接及其简介),运用方便简单,其中的核函数(常用核函数-Kernel Function)可以自己定义也可以默认.但是对一些大数据来说,有没有非线性映射,他们的性能差不多.如果不使用核,我们可以用线性分类或者回归来训练一个更大的数据集.这些数据往往具有非常高维的特征,例如文本分类Document classification.所以LIBSVM就…
原理: 1. pluskid(张弛原)的支持向量机教程(人家现在都是大牛了) http://blog.pluskid.org/?page_id=683 2. JerryLead机器学习教程 http://www.cnblogs.com/jerrylead/tag/Machine%20Learning/ 使用指南: 1. 林智仁教授给的官方FAQ,解答一些常见问题 http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f804 2.  官方使用指南(如…
转:http://kasy-13.blog.163.com/blog/static/8214691420143226365887/ Weka的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),是一款免费的,非商业化(与之对应的是SPSS公司商业数据挖掘产品--Clementine )的,基于JAVA环境下开源的机器学习(machine learning)以及数据挖掘(data minining)软件.它和它的源代码可在其官方网站(h…
之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learn SVM算法库的使用做一个小结.scikit-learn SVM算法库封装了libsvm 和 liblinear 的实现,仅仅重写了算法了接口部分. 1. scikit-learn SVM算法库使用概述 scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSVC 3个类.另一类是回归算法库,包括SVR, NuSVR,和Linea…
Libliner 中的-s 参数选择:primal 和dual LIBLINEAR的优化算法主要分为两大类,即求解原问题(primal problem)和对偶问题(dual problem).求解原问题使用的是TRON的优化算法,对偶问题使用的是Coordinate Descent优化算法.总的来说,两个算法的优化效率都较高,但还是有各自更加擅长的场景.对于样本量不大,但是维度特别高的场景,如文本分类,更适合对偶问题求解,因为由于样本量小,计算出来的Kernel Matrix也不大,后面的优化也…
在libsvm和liblinear软件包里有一个C函数叫libsvmread,这个函数的作用是把如下格式的文本文件\begin{align*} 1 & \ \ *:* \ \ *:* \\ -1 & \ \ *:* \ \ *:* \end{align*}读取进MATLAB,将第一列的$1,-1$串存成一个类标记向量,之后的特征存成矩阵. 但是有一些多标记数据集是保存成如下格式的\begin{align*} 1,3,6 & \ \ *:* \ \ *:* \\ 0,3,8 &…
Support Vector Machines for classification To whet your appetite for support vector machines, here’s a quote from machine learning researcher Andrew Ng: “SVMs are among the best (and many believe are indeed the best) ‘off-the-shelf’ supervised learni…