矩阵树定理(Matrix Tree)学习笔记】的更多相关文章

如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/6420935.html http://blog.csdn.net/Marco_L_T/article/details/72888138 首先是行列式对几个性质(基本上都是用数学归纳法证): 1.交换两行(列),行列式取相反数 2.由1.得若存在两行(列)完全相同则行列式为0 3.上(下)三角行列式即主…
矩阵树定理 Matrix Tree ​ 矩阵树定理主要用于图的生成树计数. 看到给出图求生成树的这类问题就大概要往这方面想了. 算法会根据图构造出一个特殊的基尔霍夫矩阵\(A\),接着根据矩阵树定理,用\(A\)计算出生成树个数. 1.无向图的生成树计数 对于给定的可含重边的连通无向图\(G\),求其生成树的个数.求法如下: 定义度数矩阵\(D\):该矩阵仅在对角线上有值,\(D_{i,i}\)表示\(i\)号点的度数.对于图中每一条无向边\((u,v)\),\(D_{u,u}\)++,\(D_…
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\(A\)为邻接矩阵,\(D\)为度数矩阵,则基尔霍夫(Kirchhoff)矩阵即为:\(K = D - A\).具体实现中,记 \(a\) 为Kirchhoff矩阵,则若存在 \(E(u, v)\) ,则\(a[u][u] ++, a[v][v] ++, a[u][v] --, a[v][u] --\…
终于学到这个了,本来准备省选前学来着的? 前置知识:矩阵行列式 矩阵树定理 矩阵树定理说的大概就是这样一件事:对于一张无向图 \(G\),我们记 \(D\) 为其度数矩阵,满足 \(D_{i,i}=\text{点}i\text{的度数}\),\(D_{i,j}=0(i\ne j)\),再记 \(A\) 为其邻接矩阵,满足 \(A_{i,j}=i,j\text{之间边的条数}\),如果有重边则算作多条边. 设 \(K=D-A\),那么去掉 \(K\) 第 \(k\) 行第 \(k\) 列(\(k\…
  大概--会很简洁吧 qwq. 矩阵树定理   对于无自环无向图 \(G=(V,E)\),令其度数矩阵 \(D\),邻接矩阵 \(A\),令该图的 \(\text{Kirchhoff}\) 矩阵 \(K=D-A\).取其任意一个 \(n-1\) 阶主子式 \(K'\),则 \(G\) 的生成树个数 \(s=\det K'\).   证明先咕掉 qwq. 一些推广   对于有向图以 \(r\) 为根的内向生成树,取 \(D\) 为初度矩阵,取主子式时删去 \(r\) 行 \(r\) 列,再求行列…
珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......)来实现区间压缩. 那么区间压缩的意义在于区间推平这是珂朵莉树的核心(如果没有这个操作实际上不一定需要这种算法) ps:若保证有连续相等甚至递增的区间,也可以的(吧?). 可想而知它的操作在于对区间的分裂和合并操作 (为什么?因为这样可以方便而快捷的区间推平) 珂朵莉树的实现 在众多树中因为set这个…
传送门 第一次写矩阵树定理. 就是度数矩阵减去邻接矩阵之后得到的基尔霍夫矩阵的余子式的行列式值. 这个可以用高斯消元O(n3)" role="presentation" style="position: relative;">O(n3)O(n3)求. 代码: #include<bits/stdc++.h> #define eps 1e-5 #define N 20 using namespace std; int n,m,c[N][N],…
首先,我们需要求的是 $$\sum\limits_{Tree} \prod\limits_{E \in Tree} E(u, v) \prod\limits_{E \notin Tree} (1 - E(u, v))$$ 我们知道变元矩阵树定理 ---> 不知道请见此 我们自然希望要求和的事物只跟生成树的边有关 因此考虑把$\prod\limits_{E \notin Tree} (1 - E(u, v))$转化为$\prod\limits_{E} (1 - E(u, v)) * \frac{1…
[BZOJ4894]天赋(矩阵树定理) 题面 BZOJ Description 小明有许多潜在的天赋,他希望学习这些天赋来变得更强.正如许多游戏中一样,小明也有n种潜在的天赋,但有 一些天赋必须是要有前置天赋才能够学习得到的.也就是说,有一些天赋必须是要在学习了另一个天赋的条件下才 能学习的.比如,要想学会"开炮",必须先学会"开枪".一项天赋可能有多个前置天赋,但只需习得其中一个就可 以学习这一项天赋.上帝不想为难小明,于是小明天生就已经习得了1号天赋-----&…