python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble…
# 手写数字识别 ----Softmax回归模型 # regression import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) # 获取数据 mnist是一个轻量级的类,其中以Numpy数组的形式中存储着训练集.验证集.测试集. #…
逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天这篇是机器学习专题的第24篇文章,我们来聊聊回归树模型. 所谓的回归树模型其实就是用树形模型来解决回归问题,树模型当中最经典的自然还是决策树模型,它也是几乎所有树模型的基础.虽然基本结构都是使用决策树,但是根据预测方法的不同也可以分为两种.第一种,树上的叶子节点就对应一个预测值和分类树对应,这一种方法称为回归树.第二种,树上的叶子节点对应一个线性模型,最后的结果由线性模型给出.这一种方法称为模型树. 今天我们先来看看其中的回归树.…
ps:本博客内容根据唐宇迪的的机器学习经典算法  学习视频复制总结而来 http://www.abcplus.com.cn/course/83/tasks 逻辑回归 问题描述:我们将建立一个逻辑回归模型来预测一个学生是否被大学录取.假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会.你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集.对于每一个培训例子,你有两个考试的申请人的分数和录取决定.为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率. 数据…
建立一个逻辑回归模型来预测一个学生是否被录取. import numpy as np import pandas as pd import matplotlib.pyplot as plt import os path='data'+os.sep+'Logireg_data.txt' pdData=pd.read_csv(path,header=None,names=['Exam1','Exam2','Admitted']) pdData.head() print(pdData.head())…
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import model_selectionfrom sklearn.linear_model import Ridge,RidgeCV # 读取糖尿病数据集diabetes = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\08\\diabetes.xlsx…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_di…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_di…
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d…