Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,...,an. Output 第一行输出方程在[1,m]内的整数解的个数. 接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解. Sample Input 2 10 2 -3 1 S…
在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数.UOJ AC,bzoj OLE. #include<cstdio> #include<iostream> #include<cstring> #include<vector> using namespace std; #define MAXV 4951 vector<int>v; typedef unsigned int ull; const u…
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,...,an. Output 第一行输出方程在[1,m]内的整数解的个数. 接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解.   Sample Input 2 10 2 -3 1 Sam…
题目链接  BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数也要统计进答案. #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i) #define dec(i, a, b) for (int i(a); i &g…
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个数. 接下来每行一个整数,按照从小到…
3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status][Discuss] Description 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1…
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了多少分 后面佬说这题是hash 然后就雾 考虑对于一个式子f(x)=0肯定会满足f(x)%prime=0 所以我们直接多取几个相近的prime,减小冲突几率 然后我们只需要预处理每个系数对于每个prime的模数,然后判断一下就可以了 但是这样会TLE 又可以发现对于任意的f(x)%prime=0,等…
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,...,an. Output 第一行输出方程在[1,m]内的…
P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套路:取模 显然方程两边同时$mod$结果不会改变 于是我们牺牲了正确性使答案允许我们暴力枚举. 为了提高正确性我们可以$mod$多个较小质数进行判断 至于代入解方程,用秦九韶算法 (bzoj数据真的强,压线过的) #include<iostream> #include<cstdio>…
题目:求一个n次整系数方程在1-m内的整数解  n<=100 系数<=10000位 m<=100W 题解:最暴力的想法是枚举x,带入求值看是否为0. 这样涉及到高精度乘高精度,高精度乘单精度,高精度加高精度和高精度减高精度. 复杂度 n*m*len*len ,显然只能过30%的数据 让我们考虑优化: 我们先来研究一下这个算法的主要耗时在哪里 1)将x带入方程左边求值 2)选择多少x带入 我们考虑第一个优化 1)秦九韶算法 只要我们把原方程左边化为 ((An*x+An-1)*x+An-2)…