简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
先下载github代码,下面的操作,都是基于这个版本来的! https://github.com/987334176/Intelligent_toy/archive/v1.6.zip 注意:由于涉及到版权问题,此附件没有图片和音乐.请参考链接,手动采集一下! 请参考链接: https://www.cnblogs.com/xiao987334176/p/9647993.html#autoid-3-4-0 一.玩具与玩具之间的对话 app消息提醒 之前实现了App发送语音消息给web端玩具,web端…
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥","你叫什么名字"是一个意思 这就要做 : 语义相似度 接下来我们用Python大法来实…
博客引自:https://www.cnblogs.com//DragonFire/p/9220523.html 简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) : 大概意思就是 让计算机明白一句话要表达的意思,NLP就相当于计算机在思考你说的话,让计算机知道"你是谁","你叫啥&quo…
Flask我们已经学习很多基础知识了,现在有一个问题 我们现在有一个 Flask 程序其中有3个路由和视图函数,如下: from flask import Flask app = Flask(__name__) # type:Flask @app.route("/login") def login(): return "Login" @app.route("/index") def index(): return "Index"…
基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim:进行语料库制作和算法训练 结巴(jieba)分词 在自然语言处理领域中,分词和提取关键词都是对文本处理时通常要进行的步骤.用Python语言对英文文本进行预处理时可选择NLTK库,中文文本预处理可选择jieba库.结巴分词是基于统计的分词方法,它对给出大量已经分词的文本,利用统计机器学习模型学习词语…
本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现. Word2vec Word2vec并不是一个模型--它其实是2013年Mikolov开源的一款用于计算词向量的工具.关于Word2vec更多的原理性的介绍,可以参见我的另一篇博客:word2vec前世今生 在Gensim中实现word2vec模型非常简单.首先,我们需要将原始的训练语料转化成一个sentence的迭代器:每一次迭代返回的sentence是…
在处理英文文本时,由于英文文本天生自带分词效果,可以直接通过词之间的空格来分词(但是有些人名.地名等需要考虑作为一个整体,比如New York).而对于中文还有其他类似形式的语言,我们需要根据来特殊处理分词.而在中文分词中最好用的方法可以说是jieba分词.接下来我们来介绍下jieba分词的特点.原理与及简单的应用 1.特点 1)支持三种分词模式 精确模式:试图将句子最精确的切开,适合文本分析 全模式:把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义 搜索引擎模式:在精确模式…
1.词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型 在Gensim中实现word2vec模型非常简单.首先,我们需要将原始的训练语料转化成一个sentence的迭代器:每一次迭代返回的sentence是一个word(utf8格式)的列表: class MySentences(object): def __init__(self, dirname): self.dirname = dirname def __iter__(self): for fname in os.li…
Python使用gensim进行文本相似度计算 转于:http://rzcoding.blog.163.com/blog/static/2222810172013101895642665/ 在文本处理中,比如商品评论挖掘,有时需要了解每个评论分别和商品的描述之间的相似度,以此衡量评论的客观性. 评论和商品描述的相似度越高,说明评论的用语比较官方,不带太多感情色彩,比较注重描述商品的属性和特性,角度更客观. 那么Python 里面有计算文本相似度的程序包吗,恭喜你,不仅有,而且很好很强大. 这是从…
分词工具的选择: 现在对于中文分词,分词工具有很多种,比如说:jieba分词.thulac.SnowNLP等.在这篇文档中,笔者使用的jieba分词,并且基于python3环境,选择jieba分词的理由是其比较简单易学,容易上手,并且分词效果还很不错. 分词前的准备: 待分词的中文文档 存放分词之后的结果文档 中文停用词文档(用于去停用词,在网上可以找到很多) 分词之后的结果呈现: 去停用词和分词前的中文文档 去停用词和分词之后的结果文档 分词和去停用词代码实现: import jieba #…
今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己所学的知识也做一个梳理,查漏补缺关于数据挖据.数据分析,可视化,ML,DL,NLP等. 作者:csj更新时间:2017.12.27 email:59888745@qq.com 说明:因内容较多,会不断更新 *学习总结: 2016.10 主要看的书 <Python3-廖雪峰>,<Python核…
外部的标准镜像,肯定满足不了公司的实际要求咯~~ 所以,根据同事的需求,重新制作了这个包. 其中可用库为tensorflow,numpy, pandas,scikit-learn,jieba,gensim, opencv,requests以及与hdfs文件系统的互访. 因为公司不可以直接直外网,所以dockerfile里引入了http代理. 作个记录. 这里需要注意的细节是 1,apt-get upgrade之后,要重新导入http代理的环境变量,否则不生效的. 2,datatools为自己的w…
0. 写在前面 节后第一篇,疫情还没结束,黎明前的黑暗,中国加油,武汉加油,看了很多报道,发现只有中国人才会帮助中国人,谁说中国人一盘散沙?也许是年龄大了,看到全国各地的医务人员源源不断的告别家人去支援湖北,看到医务人员.肺炎病人的故事,总会忍不住落泪,中国加油,中国人加油! 1. 场景描述 背景不写了,只谈技术,做的是文本相似性统计,因需要从文本描述性信息中分析同类信息,以便后续重点关注,数据量比较大,大概20多万,人工效率低,需要算法来实现. 根据需求要从不同维度进行统计: (1)分组不分句…
Numpy:科学计算 HOME:  http://www.numpy.org/ NumPy is the fundamental package for scientific computing with Python 科学计算库, Python的一种开源的数值计算扩展, Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机器学习框架的基础库. Pandas:科学计算库,基于Numpy HOME:  http://pandas.pydata.org/ pandas i…
在当下,人工智能的浪潮席卷而来.从AlphaGo.无人驾驶技术.人脸识别.语音对话,到商城推荐系统,金融业的风控,量化运营.用户洞察.企业征信.智能投顾等,人工智能的应用广泛渗透到各行各业,也让数据科学家们供不应求.Python和R作为机器学习的主流语言,受到了越来越多的关注.数据学习领域的新兵们经常不清楚如何在二者之间做出抉择,本文就语言特性与使用场景为大家对比剖析. 一.Python和R的概念与特性 Python是一种面向对象.解释型免费开源高级语言.它功能强大,有活跃的社区支持和各式各样的…
关键词句和文本集每篇文章相关度计算:假设语料库中有几万篇文章,每篇文章的长度不一,你任意输入关键词或句子,通过代码以tf-idf值为准检索出来相似度高的文章. 1.TF-IDF概述 TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级. TFIDF的主要思想是:如果某个词或短…
2019-12-12中文文本分词和词云图具体功能介绍与学习代码: import jiebaa="由于中文文本的单词不是通过空格或者标点符号来进行分割"#jieba.lcut()s是最常用的中文分词函数,用于精准模式,即将字符串分割为等量的中文词组,返回结果是列表类型print(jieba.lcut(a))#jieba.lcut(s,cut_all=True):用于全模式,即将字符串所有分词可能均列出来,返回结果是列表类型,冗余性较大,速度很快,但是不能解决歧义的问题print(jieb…
一 . pypinyin from pypinyin import lazy_pinyin, TONE, TONE2, TONE3 word = '孙悟空' print(lazy_pinyin(word, style=TONE)) # ['sūn', 'wù', 'kōng'] print(lazy_pinyin(word, style=TONE2)) # ['su1n', 'wu4', 'ko1ng'] print(''.join(lazy_pinyin(word, style=TONE2))…
参考链接:https://blog.csdn.net/whzhcahzxh/article/details/17528261 demo1:结巴分词: # 构造分词库,格式如下: ''' [['楼下', '买', '水果', '这家', '店', '价格比', '店要', '高', '', '', '%', '价格', '太高', '老板', '说', '老板', '您好', '家', '水果', '很漂亮', '新鲜', '进货', '价格', '挺', '高', '我刚', '搬', '喜欢'…
一.jieba分词功能 1.主要模式 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 支持繁体分词 支持自定义词典 2.算法 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字…
六款中文分词软件介绍: https://blog.csdn.net/u010883226/article/details/80731583 里面有jieba, pyltp什么的.另外下面这个博客有不少NLP相关文章: 下面是这个人的博客和github主页介绍了不少NLP内容,可以好好看看 https://www.cnblogs.com/baiboy/ https://bainingchao.github.io/categories/ sklearn+gensim︱jieba分词.词袋doc2bo…
本文利用gensim进行LDA主题模型实验,第一部分是基于前文的wiki语料,第二部分是基于Sogou新闻语料. 1. 基于wiki语料的LDA实验 上一文得到了wiki纯文本已分词语料 wiki.zh.seg.utf.txt,去停止词后可进行LDA实验. import codecs from gensim.models import LdaModel from gensim.corpora import Dictionary train = [] stopwords = codecs.open…
利用gensim 直接生成文档向量 def gen_d2v_corpus(self, lines): with open("./data/ques2_result.txt", "wb") as fw: for line in lines: fw.write(" ".join(jieba.lcut(line)) + "\n") sents = doc2vec.TaggedLineDocument("./data/que…
在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从实践的角度,使用gensim来学习word2vec. 1. gensim安装与概述 gensim是一个很好用的Python NLP的包,不光可以用于使用word2vec,还有很多其他的API可以用.它封装了google的C语言版的word2vec.当然我们可以可以直接使用C语言版的word2vec来…
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值. Gensim gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现了word2vec功能,以便进行进一步的处理. 具体API看官网:https://radimrehurek.com/gensim 中文分词 中文需要分词,英文就不需要了,分词用的 jieba . def segment(d…
今天参考网上的博客,用gensim训练了word2vec词向量.训练的语料是著名科幻小说<三体>,这部小说我一直没有看,所以这次拿来折腾一下. <三体>这本小说里有不少人名和一些特殊名词,我从网上搜了一些,作为字典,加入到jieba里,以提高分词的准确性. 一.gensim中关于word2vec的参数说明 这一部分其他博客整理的比较清楚了,我也就不抄过来了.看这个链接: https://www.cnblogs.com/pinard/p/7278324.html 二.gensim训练…
参考代码 ChineseClean_demo1.py: # -*- coding:utf-8 -*- import xlrd import xlwt ''' python3.4 ''' # file 表示源文件名字,修改此处即可 file="./data/answer_detail_5_15307860968687.xls" dirs="./result" def read_excel(rows_numb,cols_numb): f = xlwt.Workbook(…