BZOJ3296:[USACO2011OPEN]Learning Language】的更多相关文章

浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=3296 把每个牛会的语言合并在一起,然后对于没有任何一头牛会的语言扔掉. 那么答案就是语言的集合数减一. 时间复杂度:\(O(\alpha{m})\) 空间复杂度:\(O(m)\) 代码如下: #include <cstdio> using namespace std; const int…
论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.        …
博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) Andrew Ng的Machine Learning比較简单,已经看完.林田轩的机器学习基石很多其它的是从概率论的角度来介绍机器学习,之前的视频已经听了大半.但好多都是模棱两可. 如今从头開始,认真整理笔记.笔记的结构遵从课程视频的结构. 以下是机器学习基石的第一讲:the learning problem Course Introduction 机器学习是一门理论和实践相结合的课…
目录 1. MEL的优势 2. MEL的使用场景 3. MEL的示例 4. MEL的上下文对象 5. MEL的Variable 6. MEL访问属性 7. MEL操作符 本篇主要介绍Mule表达式语言,Mule Expression Language,简称MEL.MEL是一种轻量级,在Mule ESB使用的表达式语言,可用于访问和计算Mule Message的Payload,Property和Variable.几乎每一个Mule组件都可以使用MEL表达式.MEL表达式能够帮助开发者高效和优雅地过…
论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxiv.org/abs/1905.05812 文章同时使用视觉.语音.和文本(语言)信息进行情感分析,通过增加视觉和语音信号,补足了一些无法通过文本来进行判断的情况,例如下图中,第一句话需要图像才能判断为负面情绪,第二句话同时语音和图像才能判断为负面情绪. 一.模型架构 模型整体思路 1.首先,每一个模…
3296: [USACO2011 Open] Learning Languages Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 436  Solved: 239[Submit][Status][Discuss] Description 农夫约翰的N(2 <= N<=10,000)头奶牛,编号为1.. N,一共会流利地使用M(1<= M <=30,000)种语言,编号从1  .. M.,第i头,会说K_i(1 <= K_i<…
人工智能旨在了解人类智能的本质,并创造出能模仿人类智能做出反应的智能机器,目前在一些领域已经取得显著的成功,如AI玩游戏.问答系统.自动驾驶.无人机.机器人.翻译.人脸识别.语音识别等领域.深度学习的突破性进展是人们对人工智能产生巨大兴趣的主要原因之一,它包含几个关键的技术:卷积神经网络.循环神经网络.深度强化学习.生成对抗网络.表示学习.注意力机制等. 这里举两个具体的例子.借助人工智能,我们可以使用深度学习技术进行医疗影像处理,帮助患者快速准确地诊断.目前用AI进行结核病检测已经能达到97%…
论文地址:深度学习用于噪音和双语场景下的回声消除 博客地址:https://www.cnblogs.com/LXP-Never/p/14210359.html 摘要 传统的声学回声消除(AEC)通过使用自适应算法识别声学脉冲响应来工作. 我们将AEC公式化为有监督的语音分离问题,该问题将说话人信号和近端信号分开,以便仅将后者传输到远端. 训练双向长短时记忆的递归神经网络(BLSTM)对从近端和远端混合信号中提取的特征进行估计.然后应用BLSTM估计的理想比率掩模来分离和抑制远端信号,从而去除回波…
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类别标签.我们在一个数据集上训练一个产生式模型 G 以及 一个判别器 D,输入是N类当中的一个.在训练的时候,D被用于预测输入是属于 N+1的哪一个,这个+1是对应了G的输出.这种方法可以用于创造更加有效的分类器,并且可以比普通的GAN 产生更加高质量的样本. 将产生式模型应用于半监督学习并非一个新颖…
3296: [USACO2011 Open] Learning Languages Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 81  Solved: 39[Submit][Status] Description 农夫约翰的N(2 <= N<=10,000)头奶牛,编号为1.. N,一共会流利地使用M(1<= M <=30,000)种语言,编号从1 .. M.,第i头,会说K_i(1 <= K_i<= M)种语言,即L_…
为了更方便的理解.调试和优化TF程序,我们可以使用TensorBoard(可视化工具).可以使用TensorBoard查看graph,绘制图表执行过程中的定量指标.TensorBoard是完全可配置的. 1 序列化数据(Serializing the data)到磁盘 TensorBoard通过读取TF事件文件进行操作,该文件包含了在TF运行过程中产生的摘要数据(summary data) 首先创建从中要收集摘要数据的TF图,并决定图中的哪些点(nodes)需要summary operation…
Perceptron Learning Algorithm 感知器算法, 本质是二元线性分类算法,即用一条线/一个面/一个超平面将1,2维/3维/4维及以上数据集根据标签的不同一分为二. 算法确定后,根据W取值的不同形成不同的h,构成假设集合H. 如2维感知器算法,根据w0,w1,w2的不同取值,构成了不同的h,这些h最终构成H.注意为了方便表示,将阈值的相反数记为w0,对应的数据点增加一维x0,恒为1. 而算法就是根据给定数据集D从H中选出与目标模式f最为相似的g. 更新规则/学习过程, 遍历…
原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即用一条线/一个面/一个超平面将1.2维/3维/4维及以上数据集根据标签的不同一分为二.算法确定后,根据\(W\)取值的不同形成不同的\(h\),构成假设集合\(H\).如2维感知器算法,根据\(w_0\),\(w_1\),\(w_2\)的不同取值,构成了不同的\(h\),这些\(h\)最终构成\(H…
转发链接:https://blog.csdn.net/nathan1987_/article/details/79757368 The “Swift Language Version” (SWIFT_VERSION) build setting must be set to a supported value for targets which use Swift. This setting can be set in the build settings editor.…
http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到翻阅了深度…
这门课的授课老师是个台湾人,师从Caltech的Yaser S. Abu-Mostafa,他们共同编撰了<Learning From Data>这本书.Yaser S. Abu-Mostafa在edx上也开设了机器学习的公开课,不过说实话,他的埃及口音英语实在很难听懂,而且讲的内容偏重理论,所以追了几节课就放弃了.这次他的学生带来了coursera的机器学习基石这门公开课,讲的内容和Yaser的公开课差不多,而且是中文授课(ppt是英文),这对于华语世界的学生来说是个福音.未来几周,我将把这门…
1. 在深度学习中,当数据量不够大时候,常常采用下面4中方法:  (1)人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation (2)Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见https://www.wikiwan…
前言 CVPR2016 来自Korea的POSTECH这个团队   大部分算法(例如HCF, DeepLMCF)只是用在大量数据上训练好的(pretrain)的一些网络如VGG作为特征提取器,这些做法证实利用CNN深度特征对跟踪结果有显著提升. 但是毕竟clssification 和 tracking是两个不同的课题 (predicting object class labels VS locating targets of arbitrary classes.) 所以作者设计了一个网络来做跟踪…
此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一) PLA算法是基本的binary Classification算法. 一个基本的问题是,对于银行,假设我知道用户的年龄.性别.工作.工资,那么应不应该发信用卡给他? 那么它在二维空间里就是一条分割平面的直线. 如何从拥有无限多h的H中选择g? 上述算法的一种实现是: 从上述算法中可以知道:(以二维空间为例)如果没有一条直线能够完全的分开数据点,即:输入数据不是线性可分的,那么上述算法永远不会停止.一种解决方法是:…
下图为四种不同算法应用在不同大小数据量时的表现,可以看出,随着数据量的增大,算法的表现趋于接近.即不管多么糟糕的算法,数据量非常大的时候,算法表现也可以很好. 数据量很大时,学习算法表现比较好的原理: 使用比较大的训练集(意味着不可能过拟合),此时方差会比较低:此时,如果在逻辑回归或者线性回归模型中加入很多参数以及层数的话,则偏差会很低.综合起来,这会是一个很好的高性能的学习算法.…
一般来说,召回率和查准率的关系如下:1.如果需要很高的置信度的话,查准率会很高,相应的召回率很低:2.如果需要避免假阴性的话,召回率会很高,查准率会很低.下图右边显示的是召回率和查准率在一个学习算法中的关系.值得注意的是,没有一个学习算法是能同时保证高查准率和召回率的,要高查准率还是高召回率,取决于自己的需求.此外,查准率和召回率之间的关系曲线可以是多样性,不一定是图示的形状. 如何取舍查准率和召回率数值: 一开始提出来的算法有取查准率和召回率的平均值,如下面的公式average=(P+R)/2…
论文源址:https://arxiv.org/abs/1505.04366 tensorflow代码:https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation 基于DenconvNet的钢铁分割实验:https://github.com/fourmi1995/IronSegExperiment-DeconvNet 摘要 通过学习一个反卷积网络来实现分割算法, 本文卷积部分基于改进的VGG-16,反卷积网络部分由反卷积层和…
Description 农夫约翰的N(2 <= N<=10,000)头奶牛,编号为1.. N,一共会流利地使用M(1<= M <=30,000)种语言,编号从1  .. M.,第i头,会说K_i(1 <= K_i<= M)种语言,即L_i1, L_i2,..., L_{iK_i} (1 <= L_ij <= M). FJ的奶牛 不太聪明,所以K_i的总和至多为100,000.两头牛,不能直接交流,除非它们都会讲某一门语言.然而,没有共同 语言的奶牛们,可以让…
1. active learning Active learning 是一种特殊形式的半监督机器学习方法,该方法允许交互式地询问用户(或者其他形式的信息源 information source)以获取对新的数据样本的理想输出. Active learning 提供的这种交互机制尤其适用于 unlabeled data 有很多,且手工标注的代价十分高昂的场合.显然这种交互式地向用户询问以获取label,使得原始非监督问题变成了一种迭代式的监督学习(iterative supervised lear…
NLP自然语言处理: 百度AI的 NLP自然语言处理python语言--pythonSDK文档: https://ai.baidu.com/docs#/NLP-Python-SDK/top 第三方模块:pip install baidu-aip NLP_test.py from aip import AipNlp """ 你的 APPID AK SK """ APP_ID = ' API_KEY = 'jM4b8GIG9gzrzySTRq3szK…
感知机是支持向量机SVM和神经网络的基础 f = sign(wx+b) 这样看起来好像是LR是差不多的,LR是用的sigmoid函数,PLA是用的sign符号函数,两者都是线性分类器,主要的差别在于策略不同,即损失函数不同. LR是用的均方误差,PLA是用的误分类点到分离超平面的总距离. 感知机模型: f = sign(wx+b) 几何解释: wx+b = 0是一个超平面s,w是s的法向量,b是超平面的截距. 理想情况下,s把正负类分开. 感知机学习策略: 损失函数的选取是:误分类点到超平面s的…
对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 如果没有查询条件,则每次查询所有的行.实际应用中,一般要指定查询的条件.对记录进行过滤. 查询的语法: select 字段列表 from 表名列表 where 条件列表 group by 分组字段 having 分组之后的条件 order by 排序 limit 分页限定 1.基础查询 SELECT * FROM 表名; Select的优化: 任何地方都不要使用 select * from…
4.4 R1 In which of the following problems is Case/Control Sampling LEAST likely to make a positive impact? A. Predicting a shopper's gender based on the products they buy B. Finding predictors for a certain type of cancer C. Predicting if an email is…
非DL:要找好的特征 DL:无需找好的特征,但新问题:要设计好的网络架构…
上篇文章提到了误差分析以及设定误差度量值的重要性.那就是设定某个实数来评估学习算法并衡量它的表现.有了算法的评估和误差度量值,有一件重要的事情要注意,就是使用一个合适的误差度量值,有时会对学习算法造成非常微妙的影响.这类问题就是偏斜类(skewed classes)的问题.什么意思呢.以癌症分类为例,我们拥有内科病人的特征变量,并希望知道他们是否患有癌症,这就像恶性与良性肿瘤的分类问题.假设y=1表示患者患有癌症,假设y=0表示没有得癌症,然后训练逻辑回归模型.假设用测试集检验了这个分类模型,并…