numpy模块之创建矩阵、矩阵运算】的更多相关文章

本文参考给妹子讲python  https://zhuanlan.zhihu.com/p/34673397 NumPy是Numerical Python的简写,是高性能科学计算和数据分析的基础包,他是许多高级工具的构建基础. 他的核心功能是: 1.多维向量的描述和快速高效计算能力,让数组和矩阵的使用更加自然: 2.大量实用的数学函数,支撑复杂的线性代数.随机数生成以及傅里叶变换函数 3.具备数据的磁盘读写工具对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷的多.这是因为Nu…
今天看文档发现numpy并不推荐使用matrix类型.主要是因为array才是numpy的标准类型,并且基本上各种函数都有队array类型的处理,而matrix只是一部分支持而已. 这个转载还是先放着了,少用,少用! from http://www.cnblogs.com/sumuncle/p/5760458.html numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class…
numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matrix(data,dtype,copy):返回一个矩阵,其中data为ndarray对象或者字符形式:dtype:为data的type:copy:为bool类型. >>> a = np.matrix('1 2 7; 3 4 8; 5 6 9') >>> a          …
6.12自我总结 一.numpy模块 import numpy as np约定俗称要把他变成np 1.模块官方文档地址 https://docs.scipy.org/doc/numpy/reference/?v=20190307135750 2.创建矩阵 1.np.array import numpy as np #创建一维的ndarray对象 arr = np.array([1, 2, 3]) print(arr) #[1 2 3] #创建二维的ndarray对象 arr = np.array…
numpy创建矩阵常用方法 arange+reshape in: n = np.arange(0, 30, 2)# start at 0 count up by 2, stop before 30 n = n.reshape(3, 5) # reshape array to be 3x5 1 2 out: linspace+resize in: o = np.linspace(0, 4, 9) o.resize(3, 3) 1 2 out: notice:reshape与resize区别 one…
<Python机器学习手册--从数据预处理到深度学习> 这本书类似于工具书或者字典,对于python具体代码的调用和使用场景写的很清楚,感觉虽然是工具书,但是对照着做一遍应该可以对机器学习中python常用的这些库有更深入的理解,在应用中也能更为熟练. 以下是根据书上的代码进行实操,注释基本写明了每句代码的作用(写在本句代码之前)和print的输出结果(写在print之后).不一定严格按照书上内容进行,根据代码运行时具体情况稍作顺序调整,也加入了一些自己的理解. 如果复制到自己的环境下跑一遍输…
Numpy     什么是Numpy:Numeric Python         Numpy模块是Python的一种开源的数值计算扩展.             1 一个强大的N维数组对象Array             2 比较成熟的(广播)函数库             3 用于整合(C/C++)和Fortran代码的工具包             4 实用的线性代数.傅里叶变换和随机数生成函数             5 numpy和稀疏矩阵运算包scipy配合使用更加强大     …
开发|Numpy模块 Numpy模块是数据分析基础包,所以还是很重要的,耐心去体会Numpy这个工具可以做什么,我将从源码与 地产呢个实现方式说起,祝大家阅读愉快! Numpy模块提供了两个重要对象:ndarray (解决多维数组问题),ufunc(解决对数组进行处理的函数) 前言 目前所有的文章思想格式都是:知识+情感. 知识:对于所有的知识点的描述.力求不含任何的自我感情色彩. 情感:用我自己的方式,解读知识点.力求通俗易懂,完美透析知识. 目录 Numpy介绍 Numpy的数组 ​创建数组…
numpy(Numerical Python)提供了python对多维数组对象的支持:ndarray,具有矢量运算能力,快速.节省空间.numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 一.一维数组 import numpy as np #导入numpy模块 # 一维数组的表现形式 = np.array([1, 2, 3, 4]) #创建一维数组---------------[1 2 3 4] np.ndim(a) #显示a的维数--------------1…
目录 1. numpy模块 2. matplotlib模块 3. pandas模块 1. numpy模块 numpy模块的作用 用来做数据分析,对numpy数组(既有行又有列)--矩阵进行科学计算 实例 lt1 = [1, 2, 3] # n个元素 lt2 = [4, 5, 6] lt = [] for i in range(len(lt1)): # O(n) lt.append(lt1[i] * lt2[i]) print(lt) import numpy as np # 约定俗成的 arr1…