SGU 106 The equation 扩展欧几里德】的更多相关文章

106. The equation time limit per test: 0.25 sec. memory limit per test: 4096 KB There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<…
扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 && b=0 && c!=0 ) ( a=0 && b!=0 )( a!=0 && b=0 ) 能加深对扩展欧几里得的理解,不错的一题 #include <cstdio> #include <cstring> #incl…
Sol:线性不定方程+不等式求解 证明的去搜下别人的证明就好了...数学题. #include <algorithm> #include <cstdio> #include <iostream> using namespace std; long long extend_gcd(long long a,long long b,long long &x,long long &y) { if(a==0&&b==0) return -1; if…
The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1<=y<=y2.求满足条件的解的个数. analyse: 做法是扩展欧几里德. 1.首先是欧几里德算法,欧几里德算法是用于求任意两个数的最大公约数(gcd(a,b)), 这个方法基于一个定理,gcd(a,b)=gcd(b,a % b)(a>b),%表示取模. 我们来证明上述定理,因为a>b,…
H - The equation Time Limit:250MS     Memory Limit:4096KB     64bit IO Format:%I64d & %I64u Submit Status Practice SGU 106 Description There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this eq…
先放一张搞笑图.. 我一直wa2,这位不认识的大神一直wa9...这样搞笑的局面持续了一个晚上...最后各wa了10发才A... 题目链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=111527#problem/X 题意: 给定不定方程,问在给定x,y范围内的解有多少个? 分析: 很明显的扩欧. 但是这题要进行特判.. a,b,c小于0. a,b,c等于0 特判之后正常扩欧就好.. 问题是我们怎样获得给定区间的解的个数. 通解可…
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106   题意:求ax + by + c = 0在[x1, x2], [y1, y2]区间内有多少组解? 解析: ①令c = -c有ax + by = c,可用扩展欧几里德解方程解出特解 当然要先考虑a = 0, b = 0, c = 0的情况进行特判 例如:a = 0, b = 1, c = 3,x∈[x1, x2], y∈[3, 4] 即可得知有方程有x2-x1+1个解,因为x可以区间…
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去. 现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和. 你能帮助Dr. Kong判断机器人能否…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个m可以作为一个解当且仅当: 对于任意的i,j 模方程:c[i]+x*p[i]=c[j]+x*p[j] (mod m) 无解或者最小正整数解>min(l[i],l[j]) 这个可以用扩展欧几里德解决. 因为n<=15,所以可以暴力枚举每对i,j…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a…