关于dp的优化之前做过一些简单的利用优先队列或者单调队列维护一个值就ok了,但有时候给出的方程很难直接用单调队列维护,需要转化一下思路. 这种优化方式利用数形结合,根据比较斜率来抛去一些非最优解,能将方程优化到线性,但对于一些更难得题目就需要一些数据结构维护,我暂时没接触过. 先用一道简单的题目来入手,hdu 3507 http://acm.hdu.edu.cn/showproblem.php?pid=3507 Print Article Time Limit: 9000/3000 MS (Ja…
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [Done]洛谷P2511 [HAOI2008]木棍分割 [Done]洛谷P4099 [HEOI2013]SAO [Done]NOIAC37 染色 单调队列优化 前置技能:单调队列(经典的问题模型:洛谷P1886 滑动窗口) 用于优化形如\(f_i=\min/\max_{j=l_i}^{i-1}\{g_…
斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer John is considering buying more land for the farm and has his eye on N (1 <= N <= 50,000) additional rectangular plots, each with integer dimensions (1…
单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2.优化DP 例题引入: 求m区间内的最小值:https://www.luogu.org/problemnew/show/P1440 一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值.若前面的数不足m项则从第1个数开始,若前面没有数则输出0. 例题解答: 首先看到…
Part1-二分栈优化DP 引入 二分栈主要用来优化满足决策单调性的DP转移式. 即我们设\(P[i]\)为\(i\)的决策点位置,那么\(P[i]\)满足单调递增的性质的DP. 由于在这种DP中,满足决策点单调递增,那么对于一个点来说,以它为决策点的点一定是一段连续的区间. 所以我们可以枚举以哪个点作为决策点,去找到它所对应的以它为决策点的区间. 考虑如何找到一个点的区间: 可以发现,在当前情况下(枚举到以某个点作为决策点的情况下),该点所对应的区间一定为[L,N].(L可能等于N+1) 那么…
关于这一主题的DP问题的优化方法,我以前写过一篇博客与其有关,是关于对递推形DP的前缀和优化,那么这种优化方法就不再赘述了. 什么叫1D*1D的DP捏,就是一共有N种状态,而每种状态都要N种决策,这就叫1D*1D的DP,对于这种DP一般来说状态的转移都是可以从O(N2)优化到O(NlogN)甚至O(N)的,那么,针对于不同的情况,也有不同的优化方法 经典模型一:(b[x]随x非降) 对于DP方程形似与这一种的方程,明显的,这种DP的抉择方案数可以用单调队列直接解决化为O(1),所以对于这样的转移…
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$表示当前这段序列中数字大小为i的数的个数. 题解: 先考虑暴力DP, f[i][j]表示DP到i位,分为j段的最小代价. 则$f[i][j] = min(f[l - 1][j] + sum[l][i])$,其中sum[l][i]表示区间[l, i]分成一段的代价. 然后可以发现,这是具有决策单调性的…
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) 数据范围 洛咕上也没给,我能怎么办啊 非正解做法一:暴力 应该都会吧,\(O(n^2)\)枚举.洛谷上貌似40pts. 非正解做法二:…
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的队列来维护,表示在(l,r)(l,r)(l,r)这个区间当前的决策都是ididid,然后在每次求决策点的时候弹一下队头,求出当前解之后我们更新一下队尾就行了. 代码: #include<bits/stdc++.h> #define N 100005 #define ld long double u…
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由于根号函数斜率递减,所以i决策的贡献的增长速度必定比j快. 于是使用基础的决策单调性优化即可. 注意两个问题,一是DP函数要存实数而不能存整数,因为先取整会丢失在后面的判断中需要的信息.二是记录决策作用区间的时候左端点要实时更新,即下面的p[st].l++,否则在二分时会出现错误. #include<c…