首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
python机器学习——随机森林算法
】的更多相关文章
用Python实现随机森林算法,深度学习
用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态). 随机森林算法(Random forest algorithm)是对 bagging 算法的扩展.除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做…
Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”. 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的.不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复. 2,待选特征的随机选取 与数据集的随机选…
R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
H2O中的随机森林算法介绍及其项目实战(python实现)
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator H2ORandomForestEstimator 的常用方法和参数介绍: (一)建模方法: model =H2ORandomForestEstimator(ntrees=n,max_depth =m) model.train(x=random_pv.names,y='Catrgory',train…
随机森林算法demo python spark
关键参数 最重要的,常常需要调试以提高算法效果的有两个参数:numTrees,maxDepth. numTrees(决策树的个数):增加决策树的个数会降低预测结果的方差,这样在测试时会有更高的accuracy.训练时间大致与numTrees呈线性增长关系. maxDepth:是指森林中每一棵决策树最大可能depth,在决策树中提到了这个参数.更深的一棵树意味模型预测更有力,但同时训练时间更长,也更倾向于过拟合.但是值得注意的是,随机森林算法和单一决策树算法对这个参数的要求是不一样的.随机森林由于…
机器学习——Bagging与随机森林算法及其变种
Bagging算法: 凡解:给定M个数据集,有放回的随机抽取M个数据,假设如此抽取3组,3组数据一定是有重复的,所以先去重.去重后得到3组数据,每组数据量分别是s1,s2,s3,然后三组分别训练组合成一个强模型.如下图: 随机森林算法: 一般用于大规模数据,百万级以上的. 在Bagging算法的基础上,如上面的解释,在去重后得到三组数据,那么再随机抽取三个特征属性,选择最佳分割属性作为节点来创建决策树.可以说是 随机森林=决策树+Bagging 如下图 RF(随机森林)的变种: ExtraT…
Spark mllib 随机森林算法的简单应用(附代码)
此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错的选择. Spark是目前比较流行的分布式计算解决方案,同时支持集群模式和本地单机模式.由于其通过scala语言开发,原生支持scala,同时由于python在科学计算等领域的广泛应用,Spark也提供了python的接口. Spark的常用操作详见官方文档: http://spark.apache…
python机器学习的常用算法
Python机器学习 学习意味着通过学习或经验获得知识或技能.基于此,我们可以定义机器学习(ML)如下 - 它可以被定义为计算机科学领域,更具体地说是人工智能的应用,其为计算机系统提供了学习数据和从经验改进而无需明确编程的能力. 基本上,机器学习的主要焦点是允许计算机自动学习而无需人为干预.现在问题是如何开始和完成这种学习?它可以从数据的观察开始.数据可以是一些示例,指令或一些直接经验.然后在此输入的基础上,通过查找数据中的某些模式,机器可以做出更好的决策. 机器学习类型(ML) 机器学习算法帮…
R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
随机森林算法-Deep Dive
0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstrap,生成多棵树,CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.对于一个有n行的数据集,out of…