Cayley 定理与扩展 Cayley 定理】的更多相关文章

Cayley 定理 节点个数为 \(n\) 的无根标号树的个数为 \(n^{n−2}\) . 这个结论在很多计数类题目中出现,要证明它首先需要了解 \(\text{Prufer}\) 序列的相关内容.接下来给出证明. 证明: 每一棵树都可以转换为一个 \(\text{Prufer}\) 序列. 根据定义,每一个节点在 \(\text{Prufer}\) 序列中出现的次数等于该节点度数减一,即 \(d_i–1\).整个 \(\text{Prufer}\) 序列的长度为 \(∑_id_i–1=2(n…
1.Lucas定理 首先给出式子:\(C_n^m\%p = C_{\lfloor\frac{n}{p}\rfloor}^{\lfloor\frac{m}{p}\rfloor} * C_{n\%p}^{m\%p}\% p\),其中p为质数. 这里给出证明--证明是我在luogu上看到的lance1ot大佬的证明,个人认为是写的很好的,在此还要做一下补充. 首先,对于质数p,可以保证\(C_p^i(1 <= i <= p-1) \equiv 0(mod\ p)\),这个比较显然,因为组合数一定是整…
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Dr. Ceizenp'ok from planet i1c5l became famous across the whole Universe thanks to his recent discovery — the Ceizenp…
卢卡斯定理 求\(C_m^n~mod~p\) 设\(m={a_0}^{p_0}+{a_1}^{p_1}+\cdots+{a_k}^{p_k},n={b_0}^{p_0}+{b_1}^{p_1}+\cdots+{b_k}^{p_k}\) 则\(C_m^n\equiv\prod{C_{a_i}^{b_i}}(mod~p)\) 扩展卢卡斯定理 好像这也不是什么定理,只是一个计算方法 计算\(C_m^n~mod~p\),其中\(p={p_1}^{q_1}\times{p_2}^{q_2}\times\c…
首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\binom n m$时,若$P$较小,且$n,m$非常大时,我们就可以用这个定理要降低复杂度. 但是这个定理有一些限制,比如说要求$p$是质数,遇到一些毒瘤出题人不太好应对. 当$P$不是质数时,这时就要用到一个叫做扩展lucas定理的东西. 令$P=\prod p_i^{k_i}$. 我们发现,如果对…
扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details/82897638 https://blog.csdn.net/clove_unique/article/details/54571216 感觉扩展Lucas定理和Lucas定理的复杂程度差了不止一个档次,用到了一大堆莫名其妙的函数. 另外谁能告诉我把一个很大的组合数对一个非质数取模有什么卵用 #i…
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_s}}$ 然后,分别求出每个组合数模每个$p_i^{{k_i}}$的值,这里可以用扩展lucas定理求解,(以下其实就是扩展lucas定理的简略证明) 关于$C_n^m\% {p^k}$, $C_n^m = \frac{{n!}}{{m!(n - m)!}}$, 我们以$n=19,p=3,k=2$为…
http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://www.cnblogs.com/jianglangcaijin/p/3446839.html   膜拜 #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) ,总之就是在 n 个里取 w[1] 个,剩下的里面再取 w[2] 个,再在剩下的里面取... 这里的模数 P 一看就不是质数啊!大组合数对合数取模,就要用到扩展卢卡斯定理了: 关于扩展卢卡斯定理,可以看这篇博客:https://blog.csdn.net/clove_unique/article/de…
扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[p=\prod_i p_i^{k_i} \] 显然\(p_i^{k_i}\)是两两互质的,所以如果分别求出\(C_n^m\ mod\ p_i^{k_i}\),就可以构造出若干个形如\(C_n^m=a_i\ mod\ p_i^{k_i}\)的方程,然后用中国剩余定理即可求解. 层次二:组合数模质数幂…