超计算(Hyper computation)模型】的更多相关文章

超计算(Hyper computation)模型 作者:Xyan Xcllet链接:https://www.zhihu.com/question/21579465/answer/106995708来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 超计算,是一个研究比图灵机计算能力更强的计算能力的计算机器的理论计算机科学分支. 主要有以下部分模型: A.谕示机.带“黑箱”的图灵机.由图灵本人亲自提出,“黑箱”就是一个谕示,经过一个谕示就可以得到一个问题的判定结果.所有…
计算原理及模型 优化的根本思想: 尽早尽量过滤数据,减少每个阶段的数据量 减少job数 解决数据倾斜问题 Hive概述 名称       hive系统架构 metastore derbymysql   HDFS /usr/hive/warehouse   Mapreduce     hive配置文件 hive-env.shhive-site.xmlhive-log4j.properties     hive命令行 hive --config     hive shell quit.exitres…
原文:http://blog.csdn.net/zhangbinfly/article/details/7734118 最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查找相似度最高的.最优的结果.索性就直接跳到这个问题看,很多资料都提到了VSM(Vector Space Model)即向量空间模型,根据这个模型可以对搜索的结果进行最优化的筛选,目前还不知道如何证明,只能凭借想象应该是这个样子的. 1.看一下TF/IDF 我们先来看下一个叫TF/IDF的概念,一般它…
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: 这是一个协议缓冲区(protocol buffer),它完整地保存了Tensorflow图:即所有的变量.操作.集合等.此文件以 .meta 为拓展名. b) Checkpoint 文件: 这是一个二进制文件,包含weights.biases.gradients 和其他所有变量的值.此文件以 .ck…
原文链接:https://oldpan.me/archives/how-to-calculate-gpu-memory 前言 亲,显存炸了,你的显卡快冒烟了! torch.FatalError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1524590031827/work/aten/src/THC/generic/THCStorage.cu:58 想必这是所有炼丹师们最不想看到的错误,没有之一.…
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010352603/article/details/80681100 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与…
最近,笔者想研究BERT模型,然而发现想弄懂BERT模型,还得先了解Transformer. 本文尽量贴合Transformer的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并希望得到指导和纠正. 论文标题 Attention Is ALL You Need 论文地址 https://arxiv.org/pdf/1706.03762.pdf 摘要 序列转换方式由基于…
这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4*np.random.rand(), α = 10r. No. 2 Momentum β:0.9是个不错的选择.在1-β的log取值空间随机采样.例如取值范围[0.9, 0.999],则1-β的取值空间[0.001, 0.1]. No. 2 各个隐含层的神经元数量:可以在线性取值空间随机采样. No.…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
最近在做基于RPC的像方改正模型,方便对数据进行测试,修改了GDAL库中的RPC纠正模型,使之可以支持RPC像方改正参数. 下面是RPC模型的公式,rn,cn为归一化之后的图像行列号坐标,PLH为归一化后的经度纬度高程. 将上面的公式变形,使用偏移系数和缩放系数带入,可以得到图像的行列号坐标与经纬度坐标之间的坐标转换关系.整理后的公式如下所示,下标带s的为缩放系数,下标为0的表示偏移系数,rc为图像行列号,此处的PLH为地面经纬度坐标,P1-P4为有理函数的多项式系数. 使用像方改正模型的公式如…