980. Unique Paths III】的更多相关文章

On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending square. 0 represents empty squares we can walk over. -1 repre…
原题链接在这里:https://leetcode.com/problems/unique-paths-iii/ 题目: On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending s…
On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending square. 0 represents empty squares we can walk over. -1 repre…
题目如下: On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending square. 0 represents empty squares we can walk over. -1…
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 回溯法 日期 题目地址:https://leetcode.com/problems/unique-paths-iii/ 题目描述 On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square. There is exactly one s…
题目来源: https://leetcode.com/problems/unique-paths-iii/ 自我感觉难度/真实难度: 题意: 分析: 回溯法,直接DFS就可以了 自己的代码: class Solution: def uniquePathsIII(self, grid: List[List[int]]) -> int: res=0 n=len(grid) m=len(grid[0]) for i in range(n): for j in range(m): if grid[i][…
Leetcode之深度优先搜索&回溯专题-980. 不同路径 III(Unique Paths III) 深度优先搜索的解题详细介绍,点击 在二维网格 grid 上,有 4 种类型的方格: 1 表示起始方格.且只有一个起始方格. 2 表示结束方格,且只有一个结束方格. 0 表示我们可以走过的空方格. -1 表示我们无法跨越的障碍. 返回在四个方向(上.下.左.右)上行走时,从起始方格到结束方格的不同路径的数目,每一个无障碍方格都要通过一次. 示例 1: 输入:[[1,0,0,0],[0,0,0,…
On a 2-dimensional grid, there are 4 types of squares: 1 represents the starting square.  There is exactly one starting square. 2 represents the ending square.  There is exactly one ending square. 0 represents empty squares we can walk over. -1 repre…
Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. For example, There is one obstacle in the middl…
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in t…