FWT背板笔记】的更多相关文章

板子 背板子.jpg \(Fwt\)用于解决这样的问题 \[C_i=\sum_{j\bigoplus k=i}A_j\times B_k\] 其中\(\bigoplus\)是一种二元运算符,如\(or,and,xor\) 首先我们直接做复杂度显然高达\(4^n\),或许可以利用一些枚举子集的技术做到\(3^n\),但是还是非常难以接受 于是我们考虑能否像\(fft\)那样构造出一种变换\(tf\),使得\(tf(C)=tf(A)*tf(B)\)(这里是逐位相乘),同时快速完成这个变换以及逆变换呢…
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智商 ,网上的FWT博客我大多看不懂,下面这篇博客是留给我我再次忘记FWT时看的,所以像我一样的没智商选手应该也能看懂!有智商选手更能看懂咯! (写得非常匆忙,如有任何错误请在评论区指正!TAT) 什么是FWT FWT是用来快速做位运算卷积的.位运算卷积是什么?给出两个数组\(A\)和\(B\)(长度相等且是2…
FWT学习笔记 引入 一般的多项式乘法是这样子的: \(c_i=\sum_{i,j}a_j*b_k*[j+k==i]\) 但是如果我们将这个乘法式子里面的+号变换一下变成其他的运算符号呢? \(c_i=\sum_{i,j}a_j*b_k*[j\oplus k==i]\) 其中\(\oplus\)可以取\(and,or,xor\) 这个时候FFT和NTT就没有什么用了... 前人的智慧是无穷的! 考虑一个神奇的算法:FWT(快速沃尔什变化) or卷积 先从最容易的or卷积下手. 我们考虑他给出的式…
FWT学习笔记 好久以前写的,先粘上来 定义数组 \(n=2^k\) \(A=[a_0,a_1,a_2,a_3,...,a_{n-1}]\) 令\(A_0=[a_0,a_1,a_2,...,a_{\frac n 2-1}]\) 且\(A_1=[a_{\frac n 2},a_{\frac n 2+1},..,a_{n-1}]\) 即\(A_0\)为没有最高位的部分,\(A_1\)为有二进制最高位的部分 \(A\)可以用\(A=\{A_0,A_1\}\)表示 定义运算 \(A+B=[a_0+b_0…
目录 FMT/FWT学习笔记 FMT 快速莫比乌斯变换 OR卷积 AND卷积 快速沃尔什变换(FWT/XOR卷积) FMT/FWT学习笔记 FMT/FWT是算法竞赛中求or/and/xor卷积的算法,数据处理中也有应用. 网上的命名方法有很多. 这里我们选这个博客的,把AND/OR命名为FMT,XOR命名为FWT 如果是整数,我们认为\(\cup\)和\(\cap\)运算是二进制下的,也就是\(\text{|和&}\),这可以帮我们理解之后的集合幂级数. FMT 快速莫比乌斯变换 OR卷积 与F…
\(\text {FWT}\) 学习笔记 正常项的\(\text {FWT}\) 在\(\text {OI}\)中,我们经常会碰到这种问题: 给出一个长度为\(n\)的序列\(a_{1,2,...,n},b_{1,2,...,n}\),求出 \[c_k=\sum_{i\oplus j=k}a_i b_j \] 其中\(\oplus\)是定义的一种二进制下的运算. 对于这种问题,我们有一种通用的方法,我们称之为\(\text {FWT}\). 我们考虑对于一个\(A\)构造一个\(FWT\)变换序…
证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k}\) 其中 \(\oplus\) 是二元位运算中的一种. 实现 \(or\) 运算 构造 \(fwt[a]_i = \sum_{j|i=i} a_j\) 则 \(\begin{aligned} fwt[a] \times fwt[b] &= \left(\sum_{j|i=i} a_j\right)…
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂级数的性质与应用及其快速算法 by 吕凯风 一.FWT 是什么 FWT 是快速沃尔什变换.它和快速傅里叶变换一样,原本都用于物理中的频谱分析. 但是由于它可分治的特点,在算法竞赛中常被用来计算位运算卷积. 二.FWT 能干什么 它可以在 \(O(n\log n)\) 的时间复杂度内由数组 \(a,b…
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor 三种问题的解决思路都是对多项式 \( a \) 构造一个 \( a' \),令 \( a' = b' * c' \): 那么只需要把 \( b \) 变换成 \( b' \),\( c \) 变换成 \( c' \),然后乘出 \( a' \),再逆变换得到 \( a \): 下面问题就变成如何快…
开头Orz hy,Orz yrx 部分转载自hy的博客 快速沃尔什变换,可以快速计算两个多项式的位运算卷积(即and,or和xor) 问题模型如下: 给出两个多项式$A(x)$,$B(x)$,求$C(x)$满足$C[i]=\sum\limits_{j⊗k=i}A[j]*B[k]$. 约定记号 $⊗$表示某种位运算(and,or和xor中的一种),若$a$,$b$是两个整数,则$a⊗b$表示对这两个数按位进行位运算:若$A$,$B$是两个多项式,则$A⊗B$表示对这两个多项式做如上卷积:两个多项式…
之前做了那么多生成函数和多项式卷积的题目,结果今天才理解了优化卷积算法的实质. 首先我们以二进制FWT or作为最简单的例子入手. 我们发现正的FWT or变换就是求$\hat{a}_j=\sum_{i\in j}a_i$,即子集和,那这个是怎么来的呢? 我们假设$a$到$\hat{a}$的转移矩阵为$X$,则 $$(\sum_{j}X_{i,j}a_j)*(\sum_{j}X_{i,j}b_j)=\sum_jX_{i,j}(\sum_{s|t=j}a_sb_t)$$ 所以考虑$a_sb_t$的…
FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\sum_{i*j=k}A_i*B_j\)也能做(SDOI2015 序列统计). 但是,如果我们把操作符换一下呢? 比如这样? \(C_k=\sum_{i|j=k}A_i*B_j\) \(C_k=\sum_{i\&j=k}A_i*B_j\) \(C_k=\sum_{i\wedge j=k}A_i*B_…
解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先转化成为另一个多项式$FWT(A),FWT(B)$ 使得:$FWT(A\oplus B)=FWT(A)×FWT(B)$ 这里,$×$是按位乘.这个是$O(n)$的. 然后,再$IFWT$回去即可. 类似于,直接过马路不好走.先从左边走上一座天桥,再从天桥走过去,再到马路右侧走下天桥. 就变成了$O(…
\(FWT\)--快速沃尔什变化学习笔记 知识点 \(FWT\)就是求两个多项式的位运算卷积.类比\(FFT\),\(FFT\)大多数求的卷积形式为\(c_n=\sum\limits_{i+j=n}a_i*b_j\)的形式.而\(FWT\)则求的卷积形式为\(c_n=\sum\limits_{i\oplus j=n}\),如何做这个玩意呢,我们还是考虑分治.把它分成两个部分,一个部分是\(A_0\),一部分是\(A_1\),分别表示的是最高位为\(0/1\),然后对于与卷积来说\(f(A)=(f…
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理, 折半引理与求和引理 重新定义 多项式的表示 快速傅里叶变换FFT 通过 FFT 在单位复数根处插值 FFT的速度优化与迭代实现 炸精现场与 NTT 原根 NTT 任意模数 NTT 卷积状物体与分治 FFT FWT 与位运算卷积 FWT 与 \(\text{or}\) 卷积 FWT 与 \(\te…
概述 FWT的大体思路就是把要求的 C(x)=A(x)×B(x)  即 \( c[i]=\sum\limits_{j?k=i} (a[j]*b[k]) \) 变换成这样的:\( c^{'}[i]=a^{'}[i]*b^{'}[i] \). 只要知道 c'[ i ] 和 c[ i ] 的关系,就能把 A(x).B(x) 变成 A'(x).B'(x) ,从而算出 C'(x) ,再把 C'(x) 变成 C(x). 或卷积 定义\( c^{'}[i]=\sum\limits_{j | i=i} c[j]…
前言:yyb神仙的博客 FWT 基本思路:将多项式变成点值表达,点值相乘之后再逆变换回来得到特定形式的卷积: 多项式的次数界都为\(2^n\)的形式,\(A_0\)定义为前一半多项式(下标二进制第一位为\(0\)),\(A_1\)同理定义: \((A,B)\)表示多项式\(A\)和\(B\)的直接拼接,FWT的结果都是一个点值表达,相乘表示点值相乘: 下面这些变换都满足线性,记\(n\)为二进制位数,复杂度:\(O(n\times 2^n)\): or卷积 形式: \[ (A|B)_{k} =…
游标的简介 游标的概念 游标是从数据表中提取出来的数据,以临时表的形式存放在内存中,在游标中有一个数据指针,在初始状态下指向的是首记录,利用fetch语句可以移动该指针,从而对游标中的数据进行各种操作,然后将操作结果写回数据表中.…
深度实践KVM笔记 libvirt(virt-install,API,服务,virsh)->qemu(qemu-kvm进程,qemu-img)->KVM虚拟机->kvm.ko 内核模块  P7 /etc/init.d/libvirtdvirsh 腾讯云一样要自己手动进入虚拟机扩容 第3章   CPU,内存虚拟化技术 CPU 的嵌套技术nested特性,使用kvm虚拟机在理论上可以无限嵌套下去,只要物理机性能足够 P23numastat          P25              …
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}f(i) \] 一些定义 \(\max (S),\min (S)\)表示分别集合\(S\)的最大,最小元素 套路式子 \[ \max(S)=\sum_{\varnothing\not=S\subseteq T}(-1)^{|T|-1}\min(T) \] 证明 首先我…
UI学习笔记(7)--扁平化图标 认识扁平化 Flat Design 抛弃传统的渐变.阴影.高光等拟真视觉效果,打造看上去更平的界面.(颜色.形状) 扁平化图标有什么优缺点 优点: 简约不简单.有新鲜感 降低移动设备的硬件需求.延长待机时间 开发简单 缺点: 需要一定学习成本,缺乏直观 传达的感情不丰富,过于冰冷 扁平化的发展 提出:2008,谷歌提出 实现:微软,win8,彻底的扁平化风格 安卓2011年,Android 4.0实现扁平化 苹果2013年,IOS7开始扁平化 风格分类 纯平面…
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的没的的前置 导数 \(f'(x)=\lim\limits_{\triangle x\rightarrow 0}\frac{f(x+\triangle x)-f(x)}{\triangle x}\) \(\sin x:\cos x\) \(\cos x:-\sin x\) \(\ln x:\frac{…
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分治 倍增 构造 高精 模拟 图论 图 最短路,次短路 k短路 差分约束 最小生成树 拓扑排序 欧拉图 二分图染色,二分图匹配 最大团,最大独立集 tarjan找scc.桥.割点,缩点 网络流 最大流,最小割,费用流 有上下界的网络流 分数规划 2-SAT 树 LCA 最近公共祖先 树的直径 树的重心…
其实FWT我啥都不会,反正就是记一波结论,记住就好-- 具体证明的话,推荐博客:FWT快速沃尔什变换学习笔记 现有一些卷积,形如 \(C_k=\sum\limits_{i\lor j=k}A_i*B_j\) \(C_k=\sum\limits_{i\land j=k}A_i*B_j\) \(C_k=\sum\limits_{i\oplus j=k}A_i*B_j\) 然后普通的FFT肯定应付不了这玩意,于是就有了FWT(快速沃尔什变换),然后我就直接写结论好了-- FWT--Or卷积 我们把多项…
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 \[A(x)=\sum \limits_{i=0}^{n-1}a_ix^i\] \[=a_0+a_1x+a_2x^2+\dots+a_{n-1}x^{n-1}\] 点值表示法 将\(n\)个互不相同的\(x\)代入多项式,会得到\(n\)个互不相同的取值\(y\).设他们组成的\(n\)维向量分别…
最近舟游疯狂出货,心情很好~ FFT FWT 快速傅里叶变换(FFT) 具体的推导见这篇:胡小兔 - 小学生都能看懂的FFT!!! (写的很好,不过本小学生第一次没看懂0.0) 总结下关键内容 ~ Part 0 ~ 点值表示 对于一$n$项多项式$A(x)=a_0+a_1x+a_2x^2+...+a_{n-1}x^{n-1}$ 我们代入$n$个不同的数$x_i$,得到$n$个值$y_i=A(x_i)$ 则称这$n$个有序数对$(x_i,y_i)$为多项式$A(x)$的点值表示(可以认为是$xOy…
正题 题目链接:https://darkbzoj.tk/problem/4589 题目大意 求有多少个长度为\(n\)的数列满足它们都是不大于\(m\)的质数且异或和为\(0\). 解题思路 两个初始多项式\(F[0]=1\),\(G[prime\leq m]=1\),然后答案就是\(F\ xor\ G^n\).然后\(\text{FWT}\)之后点值快速幂就好了. 时间复杂度\(O(n\log n)\) \(\color{white}{写水题有助于背板}\) code #include<cst…
题面 出自HDU6057 给你两个数列 A [ 0... 2 m − 1 ] A[0...2^m-1] A[0...2m−1] 和 B [ 0... 2 m − 1 ] B[0...2^m-1] B[0...2m−1]. 请计算数列 C [ 0... 2 m − 1 ] C[0...2^m-1] C[0...2m−1]: C [ k ] = ∑ i    a n d    j = k A [ i    x o r    j ] ∗ B [ i    o r    j ] C[k]=\sum_{i…
这是我的第一篇学习笔记,如有差错,请海涵... 目录 引子 卷积形式 算法流程 OR卷积 AND卷积 XOR卷积 模板 引子 首先,考虑这是兔子 数一数,会发现你有一只兔子,现在,我再给你一只兔子 再数一数,会发现什么?没错,你有两只兔子,也就是说,1+1=2! 这就是算数的基本原理了,聪明的你懂了吗? 好,我们可以学FWT了.. 卷积形式 我们回忆一下多项式乘法的式子: 这个可以用FFT或NTT优化到O(nlogn)求出每一个Ci,但不是本章的重点,只是引出卷积的概念: 而FWT主要是解决以下…