07-matplotlib-箱线图】的更多相关文章

//2019.07.23 1.箱形图,又称为盒式图,一般可以很好地反映出数据分布的特征,也可以进行多项数据之间分布特征的比较,它主要包含五个基础数据:中位数,两个上下分位数以及上下边缘线数据 其中的一些参数具体含义及其计算过程如下: 2.双轴图的绘制代码:import numpy as npimport matplotlib.pyplot as pltimport pandas as pdplt.rcParams["font.sans-serif"]=["SimHei&quo…
代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 16:37:47 2018 @author: zhen """ """ 对比箱线图与柱状图 """ from pylab import * dataset = [113, 115, 119, 121, 124, 124, 125, 126, 126, 126, 127, 127,…
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字. I-------------I o I-------------I o I-------------I o I-------------I Q1                Q2                 Q3 (lower quartile) …
#!/usr/bin/env python# -*- coding:utf-8 -*- from matplotlib.pyplot import * x=[1,2,3,4]y=[5,4,3,2] # 创建新图标figure() # 对角线图 第1个参数:2行 第2个参数:3列的网格 第3个参数:图形在网格的位置subplot(231)plot(x,y) # 垂直柱状图subplot(232)bar(x,y) # 水平柱状图subplot(233)barh(x,y) # 堆叠柱状图-颜色间隔su…
In [1]: from matplotlib import pyplot as plt import numpy as np import matplotlib as mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体支持   1 饼图-pie()¶   1.1 pie()方法参数说明¶   pie()是matplotlib中画饼图的方法,其主要参数如下:  …
(一)箱线图---由一个箱体和一对箱须组成,箱体是由第一个四分位数,中位数和第三四分位数组成,箱须末端之外的数值是离散群,主要应用在一系列测量和观测数据的比较场景 import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams["font.sans-serif"] = ["FangSong"] mpl.rcParams["axes.unicod…
箱线图boxplot--展示数据的分布 图表作用: 1.反映一组数据的分布特征,如:分布是否对称,是否存在离群点 2.对多组数据的分布特征进行比较 3.如果只有一个定量变量,很少用箱线图去看数据的分布,而是用直方图去观察.一般都要跟其余的定性变量做分组箱线图,可以起对比作用.(key) 适合数据类型: 针对连续型变量 用法: 只有一个变量.一组的数据(1个变量,0个定性变量),比如:学生的成绩情况 只有一个变量.多组数据(1个变量,1个定性变量[班级]),比如:1.2.3班学生的成绩情况 只有一…
1.代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成数据,创建 DataFrame np.random.seed(27) data = np.random.rand(7, 3) index = ['Customer ' + str(i) for i in range(1, 8)] Metrics = ['Metric ' + str(i) for i in range(1, 4)] df…
一.箱线图 Box-plot 箱线图一般被用作显示数据分散情况.具体是计算一组数据的中位数.25%分位数.75%分位数.上边界.下边界,来将数据从大到小排列,直观展示数据整体的分布情况. 大部分正常数据在箱体中,上下边界之外的就是异常数据了. 上下边界的计算公式是: UpperLimit=Q3+1.5IQR=75%分位数+(75%分位数-25%分位数)1.5 LowerLimit=Q1-1.5IQR=25%分位数-(75%分位数-25%分位数)1.5 参数说明: 1.Q1表示下四分位数,即25%…
在画之前首先介绍一下Matlab boxplot,下面这段说明内容来自http://www.plob.org/2012/06/10/2153.html   由于matlab具有强大的计算功能,用其统计数据功能优点显而易见,这里分享使用matlab中的boxplot的一些技巧,供大家参考. Matlab boxplot命令 格式如下 boxplot(X):产生矩阵X的每一列的盒图和“须”图,“须”是从盒的尾部延伸出来,并表示盒外数据长度的线,如果“须”的外面没有数据,则在“须”的底部有一个点. w…
数据分布图简介 中医上讲看病四诊法为:望闻问切.而数据分析师分析数据的过程也有点相似,我们需要望:看看数据长什么样:闻:仔细分析数据是否合理:问:针对前两步工作搜集到的问题与业务方交流:切:结合业务方反馈的结果和项目需求进行数据分析. "望"的方法可以认为就是制作数据可视化图表的过程,而数据分布图无疑是非常能反映数据特征(用户症状)的.R语言提供了多种图表对数据分布进行描述,本文接下来将逐一讲解. 绘制基本直方图 本例选用如下测试集: 直方图的横轴为绑定变量区间分隔的取值范围,纵轴则表…
简述:   盒图是在1977年由美国的统计学家约翰·图基(John Tukey)发明的.它由五个数值点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(max).也可以往盒图里面加入平均值(mean).如上图.下四分位数.中位数.上四分位数组成一个"带有隔间的盒子".上四分位数到最大值之间建立一条延伸线,这个延伸线成为"胡须(whisker)". 由于现实数据中总是存在各式各样地"脏数据",也成为&q…
使用ggplot2绘制箱线图 ######*****绘制箱线图代码*****####### data1$学区房 <- factor(data1$school, levels = 0:1, labels = c("否", "是")) #设置学区房数据为因子类型 data1$CATE <- factor(data1$CATE, levels = c('xicheng', 'dongcheng', 'haidian', 'chaoyang', 'fengtai…
箱线图 箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图.在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具.就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义.   下面这张图展示了Bar plot.Box plot.Volin plot和Bean plot对数据分布的反应.从Bar plot上只能看到数据标准差或标准误不同:Box plot可以看到数据分布的集中性不同:Violin…
绘制Alpha多样性线箱图 绘图和统计全部为R语言,建议复制代码,在Rstuido中运行,并设置工作目录为存储之前分析结果文件的result目录 # 运行前,请在Rstudio中菜单栏选择“Session - Set work directory -- Choose directory”,弹窗选择之前分析目录中的result文件夹 # 安装相关软件包,如果末安装改为TRUE运行即可安装 if (FALSE){ source("https://bioconductor.org/biocLite.R…
箱线图 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在宏基因组领域,常用于展示样品组中各样品Alpha多样性的分布 第一种情况,最大或最小值没有超过1.5倍箱体范围 第二种情况,最大或最小值超过1.5倍箱体范围,外位延长线外,即异常值(outliers)   Alpha多样性 知识背景:Alpha多样性计算方法  常见的丰度估计方法有Shannon, Chao1和Observed OTU和PD whole tree等.我…
数据格式如下 gene_id Sham-1 Sham-2 Sham-3 Sham-4 Sham-5 Rep-1h-1 Rep-1h-2 Rep-1h-3 Rep-1h-4 Rep-1h-5 Rep-3h-1 Rep-3h-2 Rep-3h-3 Rep-3h-4 Rep-3h-5 Rep-6h-1 Rep-6h-2 Rep-6h-3 Rep-6h-4 Rep-6h-5 Rep-12h-1 Rep-12h-2 Rep-12h-3 Rep-12h-4 Rep-12h-5 Rep-24h-1 Rep-2…
我们发现这张Gary.csv表格存在学生成绩不完全的(五十三名学生,三名学生存在成绩不完整.共四个不完整成绩) 79号大学语文.高等数学 96号中国近代史纲要 65号大学体育 (1)NA表示数据集中的该数据遗失.不存在.在针对具有NA的数据集进行函数操作的时候,该NA不会被直接剔除.如x<-c(1,2,3,NA,4),取mean(x),则结果为NA,如果想去除NA的影响,需要显式告知mean方法,如 mean(x,na.rm=T):NA是没有自己的mode的,在vector中,它会“追随”其他数…
介绍箱线图之前,需要先介绍若干个其需要的术语 min:整个样本的最小值 max:整个样本的最大值 Range:即整个样本的取值范围,Range = max - min Inter-Quartile Range (IQR):四分之一range,即通过取3次中位数(median),将整个range分成四等份,其中间的两份就是IQR,下面图示说明一下: 计算方法: 1. 先对整个样本值集合计算median,将数据分为两等份: 2. 分别对前后两份数据再次计算median: 3. 则Q3 - Q1 =…
Visualization of seaborn  seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库.Seaborn库旨在将可视化作为探索和理解数据的核心部分,有助于帮人们更近距离了解所研究的数据集.无论是在kaggle官网各项算法比赛中,还是互联网公司的实际业务数据挖掘场景中,都有它的身影.    在本次介绍的这个项目中,我们将利用seaborn库对数据集进行分析,分别展示不同类型的统计图形. 首先,我们将导入可视化所需的所有必要包,我…
各国家用户消费分布 import numpy as np import pandas as pd import matplotlib.pyplot as plt data = { 'China': [1000, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2500], 'America': [1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100], 'Britain': [1000…
# -*- coding: utf-8 -*- """ Created on Wed Jun 14 13:00:11 2017 @author: Miao """ import numpy as np import scipy import matplotlib as mpl mpl.use('agg') import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf im…
持续更新~ 散点图 条形图 文氏图 饼图 盒型图 频率直方图 热图 PCA图 3D图 火山图 分面图 分面制作小多组图 地图 练习数据: year count china Ame jap '12 2.800000 1.500000 4.500000 2.500000 '13 2.941956 1.587559 5.342547 2.814862 '14 3.508838 1.648075 5.429438 2.701108 '15 4.011208 1.533966 5.419301 2.660…
1  普通风格 代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = 'SimHei' # 使图形中的中文正常编码显示 plt.rcParams['axes.unicode_minus'] = False # 使坐标轴刻度表签正常显示正负号 rng = np.random.RandomState(27) x = rng.normal(l…
1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, yl…
一.柱状图 1.通过obj.plot() 柱状图用bar表示,可通过obj.plot(kind='bar')或者obj.plot.bar()生成:在柱状图中添加参数stacked=True,会形成堆叠图. fig,axes = plt.subplots(2,2,figsize=(10,6)) s = pd.Series(np.random.randint(0,10,15),index = list('abcdefghijklmno')) df = pd.DataFrame(np.random.r…
html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100% } body { margin: 0 } article, aside, details, figcaption, figure, footer, header, hgroup, main, menu, nav, section, summary { display: block } audio, canvas, p…
import numpy as np import matplotlib.pyplot as plt ''' 箱形图(Box-plot)又称为盒须图,盒式图,或 箱线图: 是一种用在显示一组数据分散情况的资料统计图: 上边缘,上四分位数,中位数,下四分位数,下边缘,异常值: ''' np.random.seed(100) data = np.random.normal(size=1000,loc=0,scale=1) # sym 指定异常值的点:whis虚线的长度, 通过调整whis的大小来决定…
它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较 如何利用Python绘制箱型图 需要的import的包 import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties import numpy as np import pandas as pd 该函数是绘制多箱型图,且数据长度不一致的情况,input_dict = {filename1:[a1,a2,...,an],file…
箱型图Box 觉得有用的话,欢迎一起讨论相互学习~Follow Me 又称为盒须图.盒式图.盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图. 箱形图最大的优点就是不受异常值的影响,能够准确稳定地描绘出数据的离散分布情况,同时也利于数据的清洗. 例子 有一组数据为: 12,15,17,19,20,23,25,28,30,33,34,35,36,37 1.下四分位数Q1 确定四分位数的位置.Qi所在位置=i(n+1)/4,其中i=1,2,3.n表示序列中包含的项数. 根据位置,计算相应的…