git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ import tensorflow as tf from numpy.random import RandomState ''' 模拟一个回归案例 自定义一个损失函数为: 当真实值y_更大的时候 loss = a(y_ - y) 当预测值y更大的时候 loss = b(y - y_) loss_less = 10 loss_more = 1 l…
这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的). 显然,我宁愿预估多了,也不想预估少了. 所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样. (yhat沿用吴恩达课堂中的叫法)   import tensorf…
import tensorflow as tf from numpy.random import RandomState batch_size = 8 x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input") y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input') w1= tf.Variable(tf.random_normal([2, 1],…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article/details/80697711 我主要分三篇文章给大家介绍tensorflow的损失函数,本篇为tensorflow自定义损失函数.  (一)tensorflow内置的四个损失函数  (二)其他损失函数  (三)自定义损失函数 自定义损失函数是损失函数章节的结尾,学习自定义损失函数,对于提高分类…
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激活函数:引入非线性激活因素,提高模型的表达能力 常用的激活函数有relu.sigmoid.tanh等 (1)激活函数relu:在Tensorflow中,用tf.nn.relu()表示 (2)激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示 (3)激活函数tanh…
tensflow 不仅支持经典的损失函数,还可以优化任意的自定义损失函数. 预测商品销量时,如果预测值比真实销量大,商家损失的是生产商品的成本:如果预测值比真实值小,损失的则是商品的利润. 比如如果一个商品的成本是1元,但利润是10元,那么少预测一个就少赚9元:而多预测一个才亏1元,为了最大化利润预期,需要将损失函数和利润直接联系起来.注意损失函数 定义的是损失,所以要将利润最大化,定义的损失函数应该刻成本或者代价.下面给出了一个当预测多于真实值和预测少于真实值时有不同损失系数和损失函数: im…
Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制.当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型. 这里以tensorflow2官网中的例子来说明: import numpy as np import tensorflow as tf from tensorflow import keras x = np.random.random((1000, 32)) y = np.random.rando…
Google机器学习课程基于TensorFlow  : https://developers.google.cn/machine-learning/crash-course         https://developers.google.com/machine-learning/crash-course…
一.概述 许多业务仅仅使用官方提供的组件不能够满足性能上的需求,往往要通过高度可定制的组件来完成特定的业务需求. 而 NiFi 提供了自定义组件的这种方式. 二.自定义 Processor 占坑待续 三.Debug Processor 目前似乎没有较好的方式,有一个邮件列表就此话题进行了探讨. Getting started developing/debugging Nifi processors [hortonworks]Is there a way to debug a custom NiF…
原文:WPF之路--实现自定义虚拟容器(实现VirtualizingPanel) 源码下载地址: http://download.csdn.net/detail/qianshen88/6618033 在WPF应用程序开发过程中,大数据量的数据展现通常都要考虑性能问题.有下面一种常见的情况:原始数据源数据量很大,但是某一时刻数据容器中的可见元素个数是有限的,剩余大多数元素都处于不可见状态,如果一次性将所有的数据元素都渲染出来则会非常的消耗性能.因而可以考虑只渲染当前可视区域内的元素,当可视区域内的…