将所有数分解质因数,那么第一问就是求指数的最大值,第二问就是$2^{指数最大的质数个数}-1$. 首先将$10^6$以内的质因数全部找到,那么剩下部分的因子$>10^6$,且只有3种情况: 1.大质数 2.大质数的平方 3.两个大质数的乘积 对于1可以用MillerRabin算法判定,对于2可以尝试开根号然后判定. 那么剩下的一定是3,对于每个不确定的数字,如果它所含的因子只有它有,那么这两个因子可以合并,算第二问的时候个数$+=2$即可. 判断其它数字是否也有这个因子,只需要求gcd即可. 时…
[POI2010]Divine Divisor 题目大意: 给你\(m(m\le600)\)个数\(a_i(a_i\le10^{18})\).\(n=\prod a_i\).现在要你找到一个最大的\(k\)使得\(\exists d\ne1,d^k|n\),并求出有多少\(d\)满足这样的条件. 思路: 首先线性筛预处理出\(10^6\)以内的所有质数,用这些质数除\(a_i\),剩下的\(a_i\)分为以下\(4\)种情况: \(a_i=1\),表示\(a_i\)的所有素数均被找出. \(a_…
题目大意:给你$m$个数$a_i$,定义$n=\Pi_{i=1}^{m}a_i$.将$n$分解质因数为$\Pi p_i^{k_i} $,$p_i$是质数.请输出$2^{max(k_i)}-1$,以及存在多少个$k_i$,满足$k_i=max(k_i)$. 数据范围:$m≤600$,$a_i≤10^{18} $. 这题有一种很显然的做法,采用$pollard-rho$对每个$a_i$分解质因数,然后统计每种质因子出现的次数,最后取个$max$然后再统计下直接输出. 然而这题卡$pollard-rh…
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include <stdio.h> #include <algorithm> #include <string.h> #include <cstdlib> #include <cmath> using namespace std; long long n; long lon…
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范围比较小) 无论素数判定还是因子分解,试除法(Trial Division)都是首先要进行的步骤.令m=n,从2~根n一一枚举,如果当前数能够整除m,那么当前数就是n的素数因子,并用整数m 将当前数除尽为止. 若循环结束后m是大于1的整数,那么此时m也是n的素数因子. 事例如HDU1164:15mm…
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Pollard Rho是一个非常玄学的方式,用于在O(n^1/4)的期望时间复杂度内计算合数n的某个非平凡因子.事实上算法导论给出的是O(√p),p是n的某个最小因子,满足p与n/p互质.但是这些都是期望,未必符合实际.但事实上Pollard Rho算法在实际环境中运行的相当不错. Pollard Rh…
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][Status][Discuss] Description   Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个.…
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学MillerRabin素数测试). 期望下,\(Pollard\ Rho\)算法可以达到极快的复杂度. 核心思想 在\(ZJOI2019Day1\)讲课期间,它是被\(CQZ\)神仙作为随机算法内的一部分来进行介绍的. 由此可见,其核心思想便是随机二字. 操作流程 首先,我们先用\(MillerRabi…
题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cctype> #include<ctime> using namespace std; inlin…
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要把询问范围加到 \(10^{18}\) ,再多组询问呢? Miller 和 Rabin 建立了Miller-Rabin 质数测试算法. \(\\\) Fermat 测试 首先我们知道费马小定理: \[ a^{p-1}\equiv 1\pmod p \] 当且仅当 \(p\) 为素数时成立. 逆命题是…