saprk2 structed streaming】的更多相关文章

netcat (windows) >nc -L -p 9999 import java.sql.Timestamp import org.apache.spark.sql.SparkSession import org.apache.spark.sql.functions._ /** */ object Test extends App { val host = "localhost" val port = 9999 val windowSize = 10 val slideSi…
上篇了解了一些基本的Structured Streaming的概念,知道了Structured Streaming其实是一个无下界的无限递增的DataFrame.基于这个DataFrame,我们可以做一些基本的select.map.filter操作,也可以做一些复杂的join和统计.本篇就着重介绍下,Structured Streaming支持的输入输出,看看都提供了哪些方便的操作. 数据源 Structured Streaming 提供了几种数据源的类型,可以方便的构造Steaming的Dat…
 
 spark sql 可以说是 spark 中的精华部分了,我感觉整体复杂度是 spark streaming 的 5 倍以上,现在 spark 官方主推 structed streaming, spark streaming  维护的也不积极了, 我们基于 spark 来构建大数据计算任务,重心也要向 DataSet 转移,原来基于 RDD 写的代码迁移过来,好处是非常大的,尤其是在性能方面,有质的提升,  spark sql 中的各种内嵌的性能优化是比人裸写 RDD 遵守各种所谓的最佳…
spark sql 可以说是 spark 中的精华部分了,我感觉整体复杂度是 spark streaming 的 5 倍以上,现在 spark 官方主推 structed streaming, spark streaming 维护的也不积极了, 我们基于 spark 来构建大数据计算任务,重心也要向 DataSet 转移,原来基于 RDD 写的代码迁移过来,好处是非常大的,尤其是在性能方面,有质的提升, spark sql 中的各种内嵌的性能优化是比人裸写 RDD 遵守各种所谓的最佳实践更靠谱的…
2019年11月08日 数砖的 Xingbo Jiang 大佬给社区发了一封邮件,宣布 Apache Spark 3.0 预览版正式发布,这个版本主要是为了对即将发布的 Apache Spark 3.0 版本进行大规模社区测试.无论是从 API 还是从功能上来说,这个预览版都不是一个稳定的版本,它的主要目的是为了让社区提前尝试 Apache Spark 3.0 的新特性.如果大家想测试这个版本,可以到 这里 下载. Apache Spark 3.0 增加了很多令人兴奋的新特性,包括动态分区修剪(…
CDH 的 6.0.1 是一个尴尬的版本,那时候 cloudera 还没有将 spark 更新到 2.4 还使用的是 spark 2.2版本. 但后来我们发现 2.3 | 2.4 更新了非常多的 feature 和修复了一些 bug 以及更新了很多包括 structed streaming 特性.并且最近最新的 6.2.0 将会在不久之后提供 Apache phoenix 的支持.所以我尝试将目前的 CDH 升级一下并且记录下来. CM 升级: 1. 准备工作: 在进行 CDH minor 版本…
StructuredStreaming编程模型 基本概念 ◆ Time ◆ Trigger ◆ Input ◆ Query ◆ Result ◆ Output  案例模型:实时处理流单词统计编程模型 处理Event-time(事件时间)和 Late Data (延迟数据) ◆ Event-time : 事件时间 ◆ Late Data : 延迟数据   容错语义 传递端到端一次语义是结构化流设计背后的关键目标之一.为了实现这一点, 我们设计了结构化流源(Structed Streaming So…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
Storm介绍 Storm是由Twitter开源的分布式.高容错的实时处理系统,它的出现令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求.Storm常用于在实时分析.在线机器学习.持续计算.分布式远程调用和ETL等领域. 在Storm的集群里面有两种节点:控制节点(Master Node)和工作节点(Worker Node).控制节点上面运行一个名为Nimbus的进程,它用于资源分配和状态监控:每个工作节点上面运行一个Supervisor的进程,它会监听分配给它所在机器的…