这道题对我来说有陷阱虽说是赤果果的扩展欧几里德,看样子基本攻还是不够哈,基本功夫一定要好,准备每天上那种洗脑课时分  多看看数论书,弥补一下 自己 狗一样的基础, 这道题用到了一个性质: 对于不定整数方程pa+qb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解. 上面已经列出找一个 整数解的方法,在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后, /*p * a+q * b = Gcd(a, b)的其他整数解满足: p = p0 + a…
Romantic Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2385    Accepted Submission(s): 944 Problem Description The Sky is Sprite.The Birds is Fly in the Sky.The Wind is Wonderful.Blew Throw th…
题目 //第一眼看题目觉得好熟悉,但是还是没想起来//洪湖来写不出来去看了解题报告,发现是裸的 扩展欧几里得 - - /* //扩展欧几里得算法(求 ax+by=gcd )//返回d=gcd(a,b);和对应于等式ax+by=d中的x,y#define LL long longLL extend_gcd(LL a,LL b,LL &x,LL &y){ if(a==0&&b==0) return -1;//无最大公约数 if(b==0){x=1;y=0;return a;}…
裸的扩展欧几里德,求最小的X,X=((X0%b)+b)%b,每个X都对应一个Y,代入原式求解可得 #include<stdio.h> #include<string.h> typedef long long ll; ll ex_gcd(ll a,ll b,ll &x,ll &y){ if(!b){ x=,y=; return a; } int ans=ex_gcd(b,a%b,y,x); y-=a/b*x; return ans; } void cal(ll a,l…
模板: int Extend_Euclid(int a, int b, int &x, int &y){         if(b == 0){             x = 1; y = 0;             return a;         }         else{             int gcd,t;             gcd = Extend_Euclid(b, a%b, x, y);             t = x;             x…
题目链接:pid=2669">http://acm.hdu.edu.cn/showproblem.php?pid=2669 Problem Description The Sky is Sprite. The Birds is Fly in the Sky. The Wind is Wonderful. Blew Throw the Trees Trees are Shaking, Leaves are Falling. Lovers Walk passing, and so are Yo…
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去. 现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和. 你能帮助Dr. Kong判断机器人能否…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个m可以作为一个解当且仅当: 对于任意的i,j 模方程:c[i]+x*p[i]=c[j]+x*p[j] (mod m) 无解或者最小正整数解>min(l[i],l[j]) 这个可以用扩展欧几里德解决. 因为n<=15,所以可以暴力枚举每对i,j…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a…
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个. Input 第1行:1个整数T(1<=T<=50000),表示有多少组测试数据. 第2 - T+1行:每行三个整数N,A,B(1<=N…