PriorityQueue(优先队列),一个基于优先级堆的无界优先级队列. 实际上是一个堆(不指定Comparator时默认为最小堆),通过传入自定义的Comparator函数可以实现大顶堆. PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(); //小顶堆,默认容量为11 PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer&g…
堆其实也是树结构(或者说基于树结构),一般可以用堆实现优先队列. 二叉堆 堆可以用于实现其他高层数据结构,比如优先队列 而要实现一个堆,可以借助二叉树,其实现称为: 二叉堆 (使用二叉树表示的堆). 但是二叉堆,需要满足一些特殊性质: 其一.二叉堆一定是一棵完全二叉树 (完全二叉树可以用数组表示,见下面) 完全二叉树缺失的部分一定是在右下方.(每层一定是从左到右的顺序优先存放) 完全二叉树的结构,可以简单理解成按层安放元素的.(所以数组是不错的底层实现) 其二.父节点一定比子节点大 (针对大顶堆…
在讲解PriorityQueue之前,需要先熟悉一个有序数据结构:最小堆. 最小堆是一种经过排序的完全二叉树,其中任一非终端节点数值均不大于其左孩子和右孩子节点的值. 可以得出结论,如果一棵二叉树满足最小堆的要求,那么,堆顶(根节点)也就是整个序列的最小元素. 最小堆的例子如下图所示:…
#include<iostream>#include<vector>#include<math.h>#include<string>#include<algorithm>using namespace std;#include<map>#include<stack>#include<unordered_set>#include<string.h>#include<queue>struct…
Google面试题 股市上一个股票的价格从开市开始是不停的变化的,需要开发一个系统,给定一个股票,它能实时显示从开市到当前时间的这个股票的价格的中位数(中值). SOLUTION 1: 1.维持两个heap,一个是最小堆,一个是最大堆. 2.一直使maxHeap的size大于minHeap. 3. 当两边size相同时,比较新插入的value,如果它大于minHeap的最大值,把它插入到minHeap.并且把minHeap的最小值移动到maxHeap. ...具体看代码 /***********…
最近看到了 java.util.PriorityQueue.刚看到还没什么感觉,今天突然发现他可以用来找N个数中最小的K个数. 假设有如下 10 个整数. 5 2 0 1 4 8 6 9 7 3 怎么找出最小的 5 个数呢?很好想到的方法是先升序排序,然后取前 5 个就可以. 至于怎么排序方法有很多,比如简单的冒泡,选择,"难点"的有快速,希尔和堆等等. 先看看这种比较少见的实现方法的代码,再看看下面的简单介绍. PriorityQueue实现 import java.util.Arr…
1.堆:通常通过二叉堆,实为二叉树的一种,分为最小堆和最大堆,具有以下性质: 任意节点小于它的所有后裔,最小元在堆的根上. 堆总是一棵完全树 将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆. 2.最小堆实现: 插入: 1)  将新插入的元素,放置到队列的尾部. 2)  若该元素小于其父节点,两个元素互换.(上移操作) 3)  迭代,直至该元素没有父节点或小于其父节点. 删除: 1)  移掉顶部的节点. 2)  将队末的元素放置到顶部. 3)  该节点与其子节点中较小的那个比…
public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextInt(); int[] a = new int[n]; a[0] = 0; //不使用第一个位置 for(int i = 1; i < a.length; i++) a[i] = (int)(Math.random() * 100); //System.out.println(Arrays.toSt…
堆是一种经过排序的完全二叉树,其中任一非终端节点的数据值均不大于(或不小于)其左孩子和右孩子节点的值. 最大堆和最小堆是二叉堆的两种形式. 最大堆:根结点的键值是所有堆结点键值中最大者. 最小堆:根结点的键值是所有堆结点键值中最小者. public class HeapSort { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub int a[] = n…
TopK问题是指从大量数据(源数据)中获取最大(或最小)的K个数据. TopK问题是个很常见的问题:例如学校要从全校学生中找到成绩最高的500名学生,再例如某搜索引擎要统计每天的100条搜索次数最多的关键词. 对于这个问题,解决方法有很多: 方法一:对源数据中所有数据进行排序,取出前K个数据,就是TopK. 但是当数据量很大时,只需要k个最大的数,整体排序很耗时,效率不高. 方法二:维护一个K长度的数组a[],先读取源数据中的前K个放入数组,对该数组进行升序排序,再依次读取源数据第K个以后的数据…