0.Principal component analysis (PCA) Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated …
数据集及预处理 从这个例子开始,相当比例的代码都来自于官方新版文档的示例.开始的几个还好,但随后的程序都将需要大量的算力支持.Google Colab是一个非常棒的云端实验室,提供含有TPU/GPU支持的Python执行环境(需要在Edit→Notebook Settings设置中打开).速度比不上配置优良的本地电脑,但至少超过平均的开发环境. 所以如果你的电脑运行速度不理想,建议你尝试去官方文档中,使用相应代码的对应链接进入Colab执行试一试. Colab还允许新建Python笔记,来尝试自…
) # 对数据进行零中心化(重要) cov = np.dot(X.T, X) / X.shape[0] # 得到数据的协方差矩阵 数据协方差矩阵的第(i, j)个元素是数据第i个和第j个维度的协方差.具体来说,该矩阵的对角线上的元素是方差.还有,协方差矩阵是对称和半正定的.我们可以对数据协方差矩阵进行SVD(奇异值分解)运算. U,S,V = np.linalg.svd(cov) U的列是特征向量,S是装有奇异值的1维数组(因为cov是对称且半正定的,所以S中元素是特征值的平方).为了去除数据相…
上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如何读取数据.做数据预处理相关的内容.网上看的很多教程都是几个常见的例子,数据集不需要自己准备,所以不需要关心,但是实际做项目的时候做数据预处理感觉一头雾水,所以我就写一篇文章汇总一下,讲讲如何用PaddlePaddle做数据预处理. PaddlePaddle的基本数据格式 根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索性分析之后要先进行一系列的数据预处理步骤.因为拿到的原始数据存在不完整.不一致.有异常的数据,而这些“错误”数据会严重影响到数据挖掘建模的执行效率甚至导致挖掘结果出现偏差,因此首先要数据清洗.数据清洗完成之后接着进行或者同时进行数据集成.转换.归一化等一系列处理,该过程就是数据预处理.一方面是提高数据的质量,另一方面可以让数据更好的适应特定的挖掘模型,在实际工作中该部分的内容可…
当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间.技术能够让模型起飞,前提是你和业务人员一样理解数据.所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征.来看完整版泰坦尼克号数据中的这些特征 其中是否存活是我们的标签.很明显,以判断“是否存活”为目的,票号,登船的舱门,乘客编号明显是无关特征,可以直接删除.姓名,舱位…
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度:而在距离类模型,譬如K近邻,K-Means聚类中, 无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响.(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好.) 数据的无量纲…
原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升,则达到满意状态. 然而,可能性能根本不会提升,甚至还会降低. 无论处于何种情况,为了最大限度发挥 SIMD 执行的优势并实现性能提升,通常需要重新设计算法和数据布局,以便生成的 SIMD 代码尽可能高效. 另外还可收到额外的效果,即标量(非矢量化)版代码会表现得更好. 本文将通过一个 3D 动画算…