详说大数据计算的可类化Classable】的更多相关文章

可类化(Classable)是Laxcus大数据管理系统提供的一项基础功能,它能够将类转化为一串字节数组,或者逆向将字节数组转化为一个类.这项功能与JAVA提供的序列化(Serializable)非常相似,但是不同之处在于,可类化是可以由用户自己定义的,包括数据的选择.数据的样式.数据结构等一系列的规则.          这样的好处在于,我们摆脱了JAVA序列化的那种由系统硬性规定的固定格式,可以自由组织我们需要的数据,包括一些可能是私密的数据:不便在于,因为这种自由,程序员需要做些牺牲,编写…
转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什么样的场景. 一直想对这些大数据计算框架总结一下,只可惜太懒,一直拖着.今天就借这个机会好好学习一下. 一张表 名称 发起者 语言 简介 特点 适用场景 Hadoop Yahoo工程师,Apache基金会 Java MapReduce分布式计算框架+HDFS分布式文件系统(GFS)+HBase数据存…
Hadoop MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.早期的MapReduce(MR)框架简单明了,JobTracker作为MR框架的集中处理点,随着分布式系统集群的规模和其工作负荷的增长,显得力不从心: 1. JobTracker 存在单点故障. 2. JobTracker 任务重,资源消耗多,当MR任务非常多的时候,会造成很大的内存开销,增加了 JobTracker fail 的风险,业界总结出旧MR框架只能支持 4000节点主机的上限. 3. 在Task…
大数据计算服务(MaxCompute,原名ODPS)是一种快速.完全托管的EB级数据仓库解决方案. 当今社会数据收集手段不断丰富,行业数据大量积累,数据规模已增长到了传统软件行业无法承载的海量数据(百TB.PB.EB)级别.MaxCompute致力于批量结构化数据的存储和计算,提供海量数据仓库的解决方案及分析建模服务. 由于单台服务器的处理能力有限,海量数据的分析需要分布式计算模型.分布式的计算模型对数据分析人员要求较高且不易维护.数据分析人员不仅需要了解业务需求,同时还需要熟悉底层分布式计算模…
原文地址: 大数据计算引擎之Flink Flink CEP复杂事件编程 复杂事件编程(CEP)是一种基于流处理的技术,将系统数据看作不同类型的事件,通过分析事件之间的关系,建立不同的时事件系序列库,并利用过滤.关联.聚合等技术,最终有简单事件产生高级事件,并通过模式规则的方式对重要信息进行跟踪和分析,从实时数据中心发掘有价值的信息.复杂事件处理主要应用于防范网络欺诈.设备故障检测.风险规避和智能营销等领域.目前主流的CEP工具具有Esper,Jboss Drools和上夜班的MicroSoft…
MapReduce Google File System提供了大数据存储的方案,这也为后来HDFS提供了理论依据,但是在大数据存储之上的大数据计算则不得不提到MapReduce. 虽然现在通过框架的不断发展,MapReduce已经渐渐的淡出人们的视野,越来越多的框架提供了简单的SQL语法来进行大数据计算.但是,MapReduce所提供的编程模型为这一切奠定了基础,所以Google的这篇MapReduce 论文值得我们去认真的研读. 摘要 MapReduce 是一个编程模型,也是一个处理和生成超大…
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着 Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用.2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录.Spark利用1/10的节点数,把100TB数据的排序时间从72分钟提高到了23分钟. Spark在架构上包括内核部分和…
大数据计算:如何仅用1.5KB内存为十亿对象计数  Big Data Counting: How To Count A Billion Distinct Objects Using Only 1.5K This is a guest post by Matt Abrams (@abramsm), from Clearspring, discussing how they are able to accurately estimate the cardinality of sets with bi…
一.前言 1.从今天开始进行流式大数据计算的实践之路,需要完成一个车辆实时热力图 2.技术选型:HBase作为数据仓库,Storm作为流式计算框架,ECharts作为热力图的展示 3.计划使用两台虚拟机来打一个小型的分布式系统,使用Ubuntu系统 二.HBase简介 1.HBase是基于HDFS(Hadoop分布式文件系统)的NoSQL数据库,采用k-v的存储方式,所以查询速度相对比较快. 2.下面画图比较HBase与传统的RDS(关系型数据库)数据库的区别 (1)RDS,经常用的比如MySQ…
1.Spark介绍 Spark是起源于美国加州大学伯克利分校AMPLab的大数据计算平台,在2010年开源,目前是Apache软件基金会的顶级项目.随着Spark在大数据计算领域的暂露头角,越来越多的企业开始关注和使用.2014年11月,Spark在Daytona Gray Sort 100TB Benchmark竞赛中打破了由Hadoop MapReduce保持的排序记录.Spark利用1/10的节点数,分钟提高到了分钟. Spark在架构上包括内核部分和4个官方子模块--Spark SQL.…
众所周知,Apache Flink(以下简称 Flink)最早诞生于欧洲,2014 年由其创始团队捐赠给 Apache 基金会.如同其他诞生之初的项目,它新鲜,它开源,它适应了快速转的世界中更重视的速度与灵活性. 大数据时代对人类的数据驾驭能力提出了新的挑战,Flink 的诞生为企业用户获得更为快速.准确的计算能力提供了前所未有的空间与潜力.作为公认的新一代大数据计算引擎,Flink 究竟以何魅力成为阿里.腾讯.滴滴.美团.字节跳动.Netflix.Lyft 等国内外知名公司建设流计算平台的首选…
日前,全球权威咨询与服务机构Forrester发布了<The Forrester WaveTM: Cloud Data Warehouse, Q4 2018>报告.这是Forrester Wave首次发布关于云数仓解决方案(Cloud Data Warehouse,简称CDW)的测评.报告对云数仓的当前产品功能.产品路线和发展策略.市场表现等几个方面进行全面的评估,在产品能力排行榜中,阿里云力压微软排行第7. Forrester测评报告对CDW核心功能的评估主要从解决方案的多样性.数据集成.性…
如果说十年前,王坚创立阿里云让云计算在国内得到了普及,那么王坚带领团队自主研发的大数据计算平台MaxCompute则推动大数据技术向前跨越了一大步. 数据是企业的核心资产,但十年前阿里巴巴的算力已经无法满足当时急剧增长数据量的需求.基于Hadoop搭建集群是当时解决大规模数据计算的主流方案,Hadoop生态已经比较成熟,而且在规模上也可以解决当时阿里遇到的性能瓶颈.但刚加入阿里的王坚却另辟蹊径,决定自研一个大数据计算平台,也就是今天的MaxCompute. 但王坚看到,当时淘宝的业务还在快速增长…
http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等特点,且可以直接读写Hadoop上任何格式的数据,逐渐成为大数据处理的新宠,腾讯分享了Spark的原理和应用案例. [编者按]MapReduce由于其设计上的约束只适合处理离线计算,在实时查询和迭代计算上仍有较大的不足,而随着业务的发展,业界对实时查询和迭代分析有更多的需求,单纯依靠MapReduc…
什么是MaxCompute? 众所周知,MaxCompute是阿里云推出的承载EB级的数据存储能力,百PB级的单日计算能力,公共云覆盖国内外十几个国家和地区,专有云包含城市大脑在内部署超过100+套的阿里巴巴的统一计算平台.官方地址:https://www.aliyun.com/product/odps​ MaxCompute是真正为大数据而生的企业级云计算产品,其核心是一项基础服务(PaaS),用于对海量数据进行高性能的分析处理,数据规模越大,计算性能越卓越,在大规模批量计算下性能远超Hado…
老刘目前为明年校招而努力,写文章主要是想用大白话把自己复习的大数据知识点详细解释出来,拒绝资料上的生搬硬套,做到有自己的理解! 01 HBase知识点(3) 第13点:HBase表的热点问题 什么是热点问题? 就是我们检索hbase的数据首先要通过rowkey来定位数据行,但是呢这里面就有一个问题,由于rowkey设计的问题,就会导致表的数据可能只分布在hbase集群中的一个或少数节点. 当大量客户端访问hbase集群这些数据时,就会造成少数RegionServer的读写请求过多,负载过大,而其…
前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的内容详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 1. hive知识点(2) 第12点:hive分桶表 hive知识点主要偏实践,很多人会认为基本命令不用记,但是万丈高楼平地起,基本命令无论多基础,都要好好练习,多实践. 在hive中,分桶是相对分区进行更加细粒的划分.其中分区针对的是数据的存储路径,而分桶针对的是数据文件,老刘用两张相关的图对比一下,就能明白刚刚说的区别了. 第一张是表进行分区后变化: 第二张是表进行分桶后的…
前言:老刘目前为明年校招而努力,写文章主要是想用大白话把自己复习的大数据知识点详细解释出来,拒绝资料上的生搬硬套,做到有自己的理解! 01 HBase知识点 第6点:HRegionServer架构 为什么要了解HRegionServer的架构呢?因为HBase集群中数据的存储和HRegionServer有着非常大的关系,只有搞清楚了它的架构,才能理清楚数据存储的逻辑. 那就让老刘好好介绍下HRegionServer架构. StoreFile 在HRegionServer架构图中,StoreFil…
前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的内容详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 1. hive知识点(3) 从这篇文章开始决定进行一些改变,老刘在博客上主要分享大数据每个模块的重点知识点,对这些重点内容进行详细解释,每个模块的完整知识点分享在公众号:努力的老刘.等有机会了,用视频的方式先对每次分享的知识点进行一次分析和总结,再发文章进行详细的解释. 现在开始正文,还是那句话,虽然这些都是hive的常用函数,很多人不在意,但是日常开发中会遇到很多业务需要用到…
这里将介绍Flink对有状态计算的支持,其中包括状态计算和无状态计算的区别,以及在Flink中支持的不同状态类型,分别有 Keyed State 和 Operator State .另外针对状态数据的持久化,以及整个 Flink 任务的数据一致性保证,Flink 提供了 Checkpoint 机制处理和持久化状态结果数据,随后对状态数据 Flink 提供了不同的状态管理器来管理状态数据,例如: MemoryStateBackend 等. 有状态计算 在Flink架构体系中,有状态计算可以说是Fl…
一.前言 1.这一文开始进入Storm流式计算框架的学习 二.Storm简介 1.Storm与Hadoop的区别就是,Hadoop是一个离线执行的作业,执行完毕就结束了,而Storm是可以源源不断的接受数据源,不停的对数据进行处理,而数据就行水流一样不停的流进来,经过处理,再将结果存入数据库或者做其他用途 2.基础概念 (1)Tuple(元组):数据流传递的基本单元,相当于数据的流动通过Tuple作为对象来传递 (2)Spout(龙卷):相当于数据源,通过重写nextTuple()方法,源源不断…
一.前言 1.这一文学习使用Hive 二.Hive介绍与安装 Hive介绍:Hive是基于Hadoop的一个数据仓库工具,可以通过HQL语句(类似SQL)来操作HDFS上面的数据,其原理就是将用户写的HQL语句转换成MapReduce任务去执行,这样不用开发者去写繁琐的MapReduce程序,直接编写简单的HQL语句,降低了很多学习成本.由于Hive实际上是执行MapReduce,所以Hive的查询速度较慢,不适合用于实时的计算任务 1.下载Hive的tar包,并解压 -bin.tar.gz 2…
一.前言 1.上文中我们搭建好了一套HBase集群环境,这一文我们学习一下HBase的基本操作和客户端API的使用 二.shell操作 先通过命令进入HBase的命令行操作 /work/soft/hbase-/bin/hbase shell 1.建表 create 'test', 'cf' (1)以上命令是建立一个test表,里面有一个列族cf (2)与RDS不同,HBase的列不是必须的,当向列族中插入一个单元格数据时,才有了列 2.查看所有表 list 3.查看表属性 describe 't…
一,介绍 Oozie是一个基于Hadoop的工作流调度器,它可以通过Oozie Client 以编程的形式提交不同类型的作业,如MapReduce作业和Spark作业给底层的计算平台(如 Cloudera Hadoop)执行. Quartz是一个开源的调度软件,它为任务的调度执行提供了各种触发器以及监听器 下面使用Quartz + Oozie 将一个MapReduce程序提交给Cloudera Hadoop执行 二,调度思路 ①为什么要用Quartz呢?主要是借助Quartz强大的触发器功能.它…
常用类:Date--DateFormat--SimpleDateFormat--File--包装类 这些常用类就不像字符串挖那么深了,只列列用法. 时间处理: /** * 时间处理类 * DateFormat 抽象类 * SimpleDateFormat 子类 * * 父类的格式器不够灵活 尤其是在解析的时候 * 必须满足 yyyy-MM-dd HH:mm:ss 其中 - : 是核心 不能变 * 如果要灵活使用 必须靠子类 */ public class TestFormatDate { pub…
前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的知识点详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 01 hive知识点(1) 第1点:数据仓库的概念 由于hive它是基于hadoop的一个数据仓库工具,老刘先讲讲数据仓库的一些东西,再开始讲hive. 数据仓库,听名字就知道它是用来存放数据的一个仓库,仓库不同于工程,仓库只用来存放东西,不生产,也不消耗. 精简的讲,数据仓库它本身不生产数据,也不会消耗数据,数据从外部来,供给外部使用,主要用于数据分析,对企业的支持决策做一…
一.前言 1.前面我们搭建好了高可用的Hadoop集群,本文正式开始搭建HBase 2.HBase简介 (1)Master节点负责管理数据,类似Hadoop里面的namenode,但是他只负责建表改表等操作,如果挂掉了也不会影响使用 (2)RegionServer节点负责存储数据,类似Hadoop里面的datanode,通过Zookeeper进行通信 (3)可以看出HBase实际上是基于HDFS的分布式数据库,但是单机模式下也可以直接用普通文件系统存储数据 二.HBase环境搭建 1.下载tar…
一.前言 1.上文中我们已经搭建好了Hadoop和Zookeeper的集群,这一文来将Hadoop集群变得高可用 2.由于Hadoop集群是主从节点的模式,如果集群中的namenode主节点挂掉,那么集群就会瘫痪,所以我们要改造成HA模式(High Avaliable,高可用性)的集群,说白了就是设置一个备用的namenode节点,当线上使用的namenode挂掉后,会切换备用节点,让集群可以继续运行 二.HA模式配置 HA模式原理:比如设置两个namenode节点,一个active,一个sta…
一.前言 1.上一文搭建好了Hadoop单机模式,这一文继续搭建Hadoop集群 二.搭建Hadoop集群 1.根据上文的流程得到两台单机模式的机器,并保证两台单机模式正常启动,记得第二台机器core-site.xml内的fs.defaultFS参数值要改成本机的来启动,启动完毕后再改回来 2.清空数据,首先把运行单机模式后生成的数据全部清理掉 rm -rf /work/hadoop/nn/current rm -rf /work/hadoop/dn/current hdfs namenode…
1.jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true&characterEncoding=UTF-8&useSSL=false 2.desc (formatted) 表名: 可以查看表的描述 3.文件以逗号分隔,重命名csv结尾,可以用Excel打开 4.Linux下有一个wc -l 文件名,看文件内容数量 5.外部表,出现空值,同样内容放到外部表,出现空值,而放在分区表,却全部显示 6.一个是外部表删除了之后,集…