1、TensorFlow简介】的更多相关文章

第四百一十六节,Tensorflow简介与安装 TensorFlow是什么 Tensorflow是一个Google开发的第二代机器学习系统,克服了第一代系统DistBelief仅能开发神经网络算法.难以配置.依赖Google内部硬件等局限性,应用更加广泛,并且提高了灵活性和可移植性,速度和扩展性也有了大幅提高.字面上理解,TensorFlow就是以张量(Tensor)在计算图(Graph)上流动(Flow)的方式的实现和执行机器学习算法的框架.具有以下特点: 灵活性.TensorFlow不是一个…
个core可以有不同的代码路径.对于反向传播算法来说,基本计算就是矩阵向量乘法,对一个向量应用激活函数这样的向量化指令,而不像在传统的代码里会有很多if-else这样的逻辑判断,所以使用GPU加速非常有用. 但即使这样,单机的计算能力还是相对有限的. 深度学习开源工具 从数学上来讲,深度神经网络其实不复杂,我们定义不同的网络结构,比如层次之间怎么连接,每层有多少神经元,每层的激活函数是什么.前向算法非常简单,根据网络的定义计算就好了. 而反向传播算法就比较复杂了,所以现在有很多深度学习的开源框架…
参考:http://www.tensorfly.cn/tfdoc/get_started/basic_usage.html 1.用TensorFlow构造一个简单的线性拟合: # -*- coding: UTF-8 -*- # date:2018/6/14 # User:WangHong import tensorflow as tf import numpy as np #使用Numpy生成假数据(phony data),为2维每维100个点 x_data = np.float32(np.ra…
"TensorFlow is an Open Source Software Library for Machine INtenlligence" 本笔记参考tensorflow.org的教程,翻译并记录作者的学习过程,仅供参考,如有不当之处,请及时指出并多多包涵. TensorFlow是一款开源的数学计算软件,使用data flow graphs的形式进行计算.这种灵活的架构允许我们使用相同的API在单或多CPUs或GPU,servers设置移动设备上进行计算. Data Flow…
1.知识点 """ tensorflow前端系统:定义程序的图结构,主要是利用一些API实现 tensorflow后端系统:运算图结构 numpy的reshape,在原始数据做修改,并没有创建新的数据对象 1.安装:按照官方文档安装 a)安装python,pip b)升级 python -m pip install --upgrade pip c)win10安装CPU版本tensorflow ,pip install https://storage.googleapis.co…
目前工作为nlp相关的分类及数据治理,之前也使用tensorflow写过一些简单分类的代码,感受到深度学习确实用处较大,想更加系统和全面的学习下tensorflow的相关知识,于是我默默的打开了b站:发现了一门比较好的视频课程: 深度学习框架Tensorflow学习与应用 ,看样子像是炼数成金的培训视频:接下来也会像之前c++总结那样,简单总结一下tensorflow的相关知识和用法. 接口查看手册:TensorFlow官方文档(中文可搜索) tensorflow的基本概念: 使用图(graph…
FaceRank,最有趣的 TensorFlow 入门实战项目 TensorFlow 从观望到入门! https://github.com/fendouai/FaceRank 最有趣? 机器学习是不是很无聊,用来用去都是识别字体.能不能帮我找到颜值高的妹子,顺便提高一下姿势水平. FaceRank 基于 TensorFlow CNN 模型,提供了一些图片处理的工具集,后续还会提供训练好的模型.给 FaceRank 一个妹子,他给你个分数. 从此以后筛选简历,先把头像颜值低的去掉:自动寻找女主颜值…
一.TensorFlow简介 1.TensorFlow定义: tensor  :张量,N维数组 Flow   :  流,基于数据流图的计算 TensorFlow : 张量从图像的一端流动到另一端的计算过程,是将复杂的数据结     构传输至人工智能神经网络中进行分析和处理的过程. 2. 工作模式:     图graphs表示计算任务,图中的节点称之为op(operation) ,一个 op可以获得0个      或多个张量(tensor),通过创建会话(session)对象来执行计算,产生0个或…
tensorflow简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统.TensorFlow还实现了可视化工具TensorBoard,方便直观的理解计算过程. 目前TensorFlow最新迭代版本是1.6.0,实…
目录 TensorFlow简介 TensorFlow基本概念 Using TensorFlow Optimization & Linear Regression & Logistic Regression 1. TensorFlow简介   TensorFlow由Google的Brain Team创立,于2015年11月9日开源.   TensorFlow中文社区网站:http://www.tensorfly.cn .   TensorFlow, 其含义为 Tensor + Flow, 具…
1 TensorFlow 架构图 1.1 处理器 TensorFlow 可以在CPU.GPU.TPU中执行 1.2 平台 TensorFlow 具备跨平台能力,Windows .Linux.Android.IOS.Raspberry Pi.云端执行 1.3 分布式执行引擎 TensorFlow Distributed Execution Engine 分布式执行引擎 在深度学习中,最花时间的就是模型的训练,尤其大型的深度学习模型必须使用大量数据进行训练,需要数天乃至数周之久,TensorFlow…
作者简介:akshay pai,数据科学工程师,热爱研究机器学习问题.Source Dexter网站创办人. TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程语言,构建大量基于机器学习的应用程序.而且还有很多人把TensorFlow构建的应用程序或者其他框架,开源发布到GitHub上. 这次跟大家分享一些GitHub上令人惊奇的TensorFlow项目,你可以直接在你的应用中使用,或者根据自身所需进一步予以改进. TensorFlow简介 如果你已经知道…
Tensorflow 简介 1.1 科普: 人工神经网络 VS 生物神经网络 1.2 什么是神经网络 (Neural Network) 1.3 神经网络 梯度下降 1.4 科普: 神经网络的黑盒不黑 1.5 为什么选 Tensorflow? 1.6 Tensorflow 安装 1.7 神经网络在干嘛 Tensorflow 基础构架 2.1 处理结构 2.2 例子2 2.3 Session 会话控制 2.4 Variable 变量 2.5 Placeholder 传入值 2.6 什么是激励函数 (…
1 tensorflow简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域. 2 tensorflow架构 我自己画的简图如下 3 代码架构…
Distributed TensorFlow Todo list: Distributed TensorFlow简介 Distributed TensorFlow的部署与运行 对3个台主机做多卡GPU和两台主机做多卡GPU的结果作对比 Distributed TensorFlow 意在使用等多主机的GPU加载模型,加速训练. 在分布式的tensorflow可以更快过运行更大的模型. Distributed tensorflow可以运行在分布式集群上,也可以运行在 在分布式的tensorflow是…
1.TensorFlow 简介:TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一. 2.TensorFlow 环境的准备: 本人使用 macOS,Python 版本直接使用 anaconda 的集成包,我们使用 anaconda 来管理环境,为 TensorFlow 创建独立的 Python 环境. 创建一个名为 tensorflow 的 Python 环境: conda create --name tensorflow python=3.6 激活环境: sou…
一.TensorFlow 简介 TensorFlow 是 Google 开源的一款人工智能学习系统.为什么叫这个名字呢? Tensor 的意思是张量,代表 N 维数组:Flow 的意思是流,代表基于数据流图的计算. 把 N 维数字从流图的一端流动到另一端的过程,就是人工智能神经网络进行分析和处理的过程. 话说在 Android 占领了移动端后,Google开源了 TensorFlow,希望占领 AI 端. TF的特点是可以支持多种设备,大到 GPU.CPU,小到平板和手机都可以跑起来 TF. 而…
1. tensorflow简介 Tensorflow 是 google 开源的机器学习工具,在2015年11月其实现正式开源,开源协议Apache 2.0. Tensorflow采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的边(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor).训练模型时tensor会不…
Python玩转人工智能最火框架 TensorFlow应用实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 全民人工智能时代,不甘心只做一个旁观者,那就现在开始,从人工智能最流行的框架TensorFlow学起 第1章 课程整体介绍 课程背景简介,项目成果演示,知识点和软件简介,让大家对接下来的学习心中有数 1-1 课程整体介绍及导学 第2章 人工智能基础知识 人工智能.神经网络.机器学习.深度学习.激活函数.过拟合.卷积神经网络.循环神经网络等知识的循…
任何曾经试图在 Python 中只利用 NumPy 编写神经网络代码的人都知道那是多么麻烦.编写一个简单的一层前馈网络的代码尚且需要 40 多行代码,当增加层数时,编写代码将会更加困难,执行时间也会更长. TensorFlow 使这一切变得更加简单快捷,从而缩短了想法到部署之间的实现时间.在本教程中,你将学习如何利用 TensorFlow 的功能来实现深度神经网络. TensorFlow 是由 Google Brain 团队为深度神经网络(DNN)开发的功能强大的开源软件库,于 2015 年 1…
Harrison Kinsley ——PythonProgramming.net的创始人 TensorFlow官方网站有相当多的文档和教程,但这些往往认为读者掌握了一些机器学习和人工智能知识.除了知道ML和AI,你也应该对Python编程语言非常熟练.因此,在开始学习如何使用TensorFlow前,首先学习更多的Python语言,而不是与机器学习直接相关的任何东西. 1.假设熟练Python,但不会机器学习,那么可以查看这个机器学习实践w / Python教程,其中涵盖了与机器学习相关的概念.算…
一.TensorFlow简介 TensorFlow 是由 Google Brain 团队为深度神经网络(DNN)开发的功能强大的开源软件库.当前流行的深度学习框架,从中能够清楚地看到 TensorFlow 的领先地位: 二.Ubuntu16.04下安装tensorFlow pip3 install tensorflow 参考文章: ubuntu16.04下安装&配置anaconda+tensorflow新手教程 参考文章: Ubuntu16.04换成清华大学源 TensorFlow教程:Tens…
Tensorflow 简介 1.1 科普: 人工神经网络 VS 生物神经网络 1.2 什么是神经网络 (Neural Network) 1.3 神经网络 梯度下降 1.4 科普: 神经网络的黑盒不黑 1.5 为什么选 Tensorflow? 1.6 Tensorflow 安装 1.7 神经网络在干嘛 Tensorflow 基础构架 2.1 处理结构 2.2 例子2 2.3 Session 会话控制 2.4 Variable 变量 2.5 Placeholder 传入值 2.6 什么是激励函数 (…
TensorFlow™ 简介: TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等.TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度…
手把手教你搭建分布式集群,进入生产环境的TensorFlow 分布式TensorFlow简介 前一篇<分布式TensorFlow集群local server使用详解>我们介绍了分布式TensorFlow的基本概念,现在我们可以动手搭建一个真正的分布式TensorFlow集群. 分布式TensorFlow集群由多个服务端进程和客户端进程组成,在某些场景下,服务端和客户端可以写到同一个Python文件并起在同一个进程,但为了简化代码让大家更好理解分布式架构,我们将启动两个worker并使用单独的客…
一.TensorFlow简介 TensorFlow是由谷歌开发的一套机器学习的工具,使用方法很简单,只需要输入训练数据位置,设定参数和优化方法等,TensorFlow就可以将优化结果显示出来,节省了很大量的编程时间,TensorFlow的功能很多很强大,这边挑选了一个比较简单实现的方法,就是利用TensorFlow的逻辑回归算法对数据库中的手写数字做识别,让机器找出规律,然后再导入新的数字让机器识别. 二.流程介绍 上图是TensorFlow的流程,可以看到一开始要先将参数初始化,然后导入训练数…
这个程序为简单的三层结构组成:输入层.中间层.输出层 要理清各层间变量个数 import numpy as np import matplotlib.pyplot as plt import tensorflow as tf #使用numpy生成200个随机点 x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis] noise=np.random.normal(0,0.02,x_data.shape) y_data=np.square(x_data)+noi…
给不明白深度学习能干什么的同学,感受下深度学习的power import tensorflow as tf import numpy as np #使用numpy生成100个随机点 x_data=np.random.rand(100) y_data=x_data*0.1+0.2 #这里我们设定已知直线的k为0.1 b为0.2得到y_data #构造一个线性模型 b=tf.Variable(0.) k=tf.Variable(0.) y=k*x_data+b #二次代价函数(白话:两数之差平方后取…
import tensorflow as tf #Fetch概念 在session中同时运行多个op input1=tf.constant(3.0) #constant()是常量不用进行init初始化 input2=tf.constant(2.0) input3=tf.constant(5.0) add=tf.add(input2, input3) mul=tf.multiply(input1,add) with tf.Session() as sess: result=sess.run([mu…
import tensorflow as tf x=tf.Variable([1,2]) a=tf.constant([3,3]) sub=tf.subtract(x,a) #增加一个减法op add=tf.add(x,sub) #增加一个加法op #注意变量再使用之前要再sess中做初始化,但是下边这种初始化方法不会指定变量的初始化顺序 init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init…