1. 控制变量 0x1:控制变量主要思想 科学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,吧多因素的问题变成多个单因素的问题.每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决,这种方法叫控制变量法.它是科学探索中的重要思想方法,广泛地运用在各个科学探索和科学实验研究之中. 0x2:控制变量思想在机器学习中的应用 在机器学习项目中,我们可能会将专家领域经验融合到特征工程中,即主观先验. 在设计并获得特征向量后…
1基本流程步骤1:准备硬件(linux操作系统)步骤2:准备软件安装包,并安装基础软件(主要是JDK)步骤3:修改配置文件步骤4:分发hadoop步骤5:启动服务步骤6:验证是否启动成功!2硬件配置要求 1测试环境: 一台pc机或者服务器 建议内存不少于4G(2G也行)---------越高越流畅 2生产环境:>小于100个节点 建议每台机器配置不少于: dual quad-core 2.6 Ghz CPU, 24 GB of DDR3 RAM dual 1 Gb Ethernet NICs a…
应发奖金计算 简述:企业发放的奖金根据利润提成.利润(profit)低于或等于10万元时,奖金可提10%: 利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%: 20万到40万之间时,高于20万元的部分,可提成5%: 40万到60万之间时高于40万元的部分,可提成3%: 60万到100万之间时,高于60万元的部分,可提成1.5%, 高于100万元时,超过100万元的部分按1%提成. 提问:从键盘输入当月利润profit,求应发放奖金总数?   0…
function bubbleSort($arr){ $len = count($arr); if($len<=1) { return $arr; } for ($i=0;$i<$len;$i++) { for ($j=1;$j<$len-$i;$j++) { if($arr[$j-1]>$arr[$j]) { $tmp = $arr[$j]; $arr[$j] = $arr[$j-1]; $arr[$j-1] = $tmp; } } } return $arr; } functi…
之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上不然,后面详述. 上一讲谈到了概率分布的因式分解 \begin{array}{l}P\left({X,Y\left| Z \right.} \right) = P\left( {X\left| Z \right.} \right)P\left({Y\left| Z \right.} \right)\…
之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( {I\left| D \right.}\right)P\left( {G\left| {D,I} \right.} \right)P\left( {S\left| {D,I,G} \right.}\right)P\left( {L\left| {D,I,G,S} \right.} \right)"…
朴素贝叶斯(Naïve Bayes) 介绍 Byesian算法是统计学的分类方法,它是一种利用概率统计知识进行分类的算法.在许多场合,朴素贝叶斯分类算法可以与决策树和神经网络分类算法想媲美,该算法能运用到大型数据库中,且方法简单,分类准确率高,速度快,这个算法是从贝叶斯定理的基础上发展而来的,贝叶斯定理假设不同属性值之间是不相关联的.但是现实说中的很多时候,这种假设是不成立的,从而导致该算法的准确性会有所下降. 运用场景 1.医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模…