如果有商品品类的数据pairRDD(categoryId,clickCount_orderCount_payCount),用Spark完成Top5,你会怎么做? 这里假设使用Java语言进行编写,那么你有两种思路: 1.简化成RDD(categoryObject),其中categoryObject实现了java.lang.Comparable.然后使用top(5)获得topN 2.转换成PairRDD(categoryKey,info),其中categoryKey实现了scala.math.Or…
原文链接:Spark Streaming中空batches处理的两种方法 Spark Streaming是近实时(near real time)的小批处理系统.对给定的时间间隔(interval),Spark Streaming生成新的batch并对它进行一些处理.每个batch中的数据都代表一个RDD,但是如果一些batch中没有数据会发生什么事情呢?Spark Streaming将会产生EmptyRDD的RDD,它的定义如下: 01 package org.apache.spark.rdd…
一.前述 SparkStreamin是流式问题的解决的代表,一般结合kafka使用,所以本文着重讲解sparkStreaming+kafka两种模式. 二.具体 1.Receiver模式    原理图:  receiver模式理解: 在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据.数据会被持久化,默认级别为MEMORY_AND_DISK_SER_2,这个级别也可以修改.receiver task对接收过来的数据进行存储…
源码分析的spark版本是1.6. 首先,先看一下 org.apache.spark.streaming.dstream.InputDStream 的 类说明: This is the abstract base class for all input streams. This class provides methods start() and stop() which is called by Spark Streaming system to start and stop receivi…
<计算机网络>谢希仁著第四版课后习题答案答: 1):发送延迟=107/(100×1000)=100s         传播延迟=1000×1000/(2×108)=5×10-3s=5ms 2):发送延迟=103/(109)=10-6s=1us         传播延迟=1000×1000/(2×108)=5×10-3s=5ms…
在学习Spark过程中,资料中介绍的提交Spark Job的方式主要有两种(我所知道的): 第一种: 通过命令行的方式提交Job,使用spark 自带的spark-submit工具提交,官网和大多数参考资料都是已这种方式提交的,提交命令示例如下:./spark-submit --class com.learn.spark.SimpleApp --master yarn --deploy-mode client --driver-memory 2g --executor-memory 2g --e…
概述 Spark Streaming 支持多种实时输入源数据的读取,其中包括Kafka.flume.socket流等等.除了Kafka以外的实时输入源,由于我们的业务场景没有涉及,在此将不会讨论.本篇文章主要着眼于我们目前的业务场景,只关注Spark Streaming读取Kafka数据的方式. Spark Streaming 官方提供了两种方式读取Kafka数据: 一是Receiver-based Approach.该种读取模式官方最先支持,并在Spark 1.2提供了数据零丢失(zero-d…
由于实际环境较为复杂,从Spark官方下载二进制安装包可能不具有相关功能或不支持指定的软件版本,这就需要我们根据实际情况编译Spark源代码,生成所需要的部署包. Spark可以通过Maven和SBT两种方式进行编译,再通过make-distribution.sh脚本生成部署包 Maven方式编译需要Maven工具,而SBT方式编译需要安装Git工具,两种方式均需要在联网下下载依赖包.…
本章导读 RDD作为Spark对各种数据计算模型的统一抽象,被用于迭代计算过程以及任务输出结果的缓存读写.在所有MapReduce框架中,shuffle是连接map任务和reduce任务的桥梁.map任务的中间输出要作为reduce任务的输入,就必须经过shuffle,shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,我们可以看到Spark提供多种计算结果处理的方式,对shuffle过程进行了优化. 本章将继续以word count为例讲解.…
spark 例子groupByKey分组计算 例子描述: [分组.计算] 主要为两部分,将同类的数据分组归纳到一起,并将分组后的数据进行简单数学计算. 难点在于怎么去理解groupBy和groupByKey 原始数据 2010-05-04 12:50,10,10,10 2010-05-05 13:50,20,20,20 2010-05-06 14:50,30,30,30 2010-05-05 13:50,20,20,20 2010-05-06 14:50,30,30,30 2010-05-04…