流失预测是个重要的业务,通过预测哪些客户可能取消对服务的订阅来最大限度地减少客户流失.虽然最初在电信行业使用,但它已经成为银行,互联网服务提供商,保险公司和其他垂直行业的通用业务. 预测过程是大规模数据的驱动,并且经常结合使用先进的机器学习技术.在本篇文章中,我们将看到通常使用的哪些类型客户数据,对数据进行一些初步分析,并生成流失预测模型 - 所有这些都是通过Spark及其机器学习框架来完成的. 使用数据科学更好地理解和预测客户行为是一个迭代过程,其中涉及: 1.发现和模型创建: 分析历史数据.…